
Discovering Opinion Intervals
from Conflicts in Signed Graphs

Peter Blohm∗

Aalto University
Espoo, Finland

peter.blohm@aalto.fi

Florian Chen∗

University of Oxford
Oxford, UK

florian.chen@cs.ox.ac.uk

Aristides Gionis
KTH Royal Institute of Technology

Stockholm, Sweden
argioni@kth.se

Stefan Neumann
TU Wien

Vienna, Austria
stefan.neumann@tuwien.ac.at

Abstract

Online social media provide a platform for people to discuss current events and
exchange opinions with their peers. While interactions are predominantly positive,
in recent years, there has been a lot of research to understand the conflicts in social
networks and how they are based on different views and opinions. In this paper,
we ask whether the conflicts in a network reveal a small and interpretable set of
prevalent opinion ranges that explain the users’ interactions. More precisely, we
consider signed graphs, where the edge signs indicate positive and negative interac-
tions of node pairs, and our goal is to infer opinion intervals that are consistent with
the edge signs. We introduce an optimization problem that models this question,
and we give strong hardness results and a polynomial-time approximation scheme
by utilizing connections to interval graphs and the CORRELATION CLUSTERING
problem. We further provide scalable heuristics and show that in experiments they
yield more expressive solutions than CORRELATION CLUSTERING baselines. We
also present a case study on a novel real-world dataset from the German parliament,
showing that our algorithms can recover the political leaning of German parties
based on co-voting behavior.

1 Introduction

Online social networks are essential parts of modern societies and are used by billions of people to
discuss current events. Even though a majority of the interactions on such networks are positive,
there are a substantial number of conflicts, particularly due to tensions among people with differing
viewpoints [47, 46].

As a result, gaining a deeper understanding of these conflicts has become essential. This question is
often studied using signed graphs [28, 47, 46], where each edge has a sign that is either positive (+)
if two nodes interact amicably, or negative (−) if the interaction is conflicting. A classic formulation
used to analyze signed graphs and gain insights about the graph structure and potentially the opinions
of nodes is the CORRELATION CLUSTERING problem [4]. In CORRELATION CLUSTERING, we ask
to partition the nodes of a given signed graph into clusters, so as to maximize the number of edges
that are consistent with the clustering (or minimize the number of inconsistent edges).

∗ Equal contribution. This work was done while the authors were at TU Wien.

Preprint. Under review.

1 2 3 4 5 6 7 8

LINKE (Left) GRÜNE (Green) SPD (Social Democrat)

FDP (Liberal) CDU/CSU (Conservative) AfD (Far Right)

Figure 1: Visualization of our results on a signed graph based on co-voting behavior in the German
parliament. We computed a solution to BEST INTERVAL APPROXIMATION with 8 intervals, where
consecutive intervals overlap (the intervals are visualized at the bottom of the figure). Each point
corresponds to a German politician and assignments are visualized by mapping them to their party
(y-axis) and interval (x-axis); for example, interval 3 contains politicians from SPD, GRÜNE, and
LINKE. In each interval, points are shifted left or right, based on the number of positive and negative
edges the corresponding politician shares with adjacent intervals.

One drawback of the CORRELATION CLUSTERING formulation is that it makes hard decisions
for the assignment of nodes into clusters and does not allow for a nuanced model in the presence
of complex node interactions. For instance, in the landscape of European political parties, the
opinions of representatives typically do not align perfectly with party lines; instead, members of
ideologically-neighboring parties may agree on certain issues, while at the same time, members of
the same party may disagree on other issues. Similar observations have been made for the US House
of Representatives [2], however, when more parties are involved, modeling the interactions between
representatives becomes increasingly complex.

In this paper, we introduce a novel problem to analyze signed graphs and discover structure that
explains the nodes’ interactions (conflicts and agreements) more accurately. Instead of assigning
nodes to disjoint clusters, we seek to assign nodes to a small number of potentially-overlapping
opinion intervals. The resulting structure can lead to meaningful insights and intuitive visualization
(e.g., see Figure 1). We show that our problem is more expressive than CORRELATION CLUSTERING,
thus resolving the drawback mentioned above. At the same time, our problem only requires the edge
signs in the network as input, making it widely applicable.

Our results. First, we introduce the BEST INTERVAL APPROXIMATION problem: Given a signed
graph G = (V,E+ ∪E−), assign an interval Iv ⊂ R to every vertex v ∈ V such that we maximize
the number of edges {u, v} ∈ E+ with Iu ∩ Iv ̸= ∅ and {u, v} ∈ E− with Iu ∩ Iv = ∅. In other
words, if two nodes are connected by a positive edge, then their corresponding intervals should
overlap, whereas if they are connected by a negative edge, then their intervals should be disjoint. Note
that for a node v, we can think of Iv as the range of opinions that are acceptable to v and yield an
amicable interaction; all opinions outside of Iv are not acceptable and yield a conflict. This problem
is more expressive than the CORRELATION CLUSTERING problem of Bansal et al. [4], and a related
problem by Kermarrec and Thraves [33] as we explain below.

Second, we show that BEST INTERVAL APPROXIMATION is NP-hard even when the graph G+ =
(V,E+) induced by the positive edges forms a cycle. In a sense, this is the strongest possible hardness
result one could hope for since removing a single edge from the cycle G+ = (V,E+) produces
a path, for which intervals can always be assigned without any error. This implies that (unless
P = NP) for BEST INTERVAL APPROXIMATION there is no FPT algorithm that parameterizes
by the number of required edge removals and that the disagreement version of BEST INTERVAL
APPROXIMATION cannot be approximated within any multiplicative factor. It also provides novel
insights into the hardness of finding forbidden induced subgraphs, which rules out several algorithm
design approaches. Our reduction is based on a result of Cygan et al. [22], but making it work for
cycles requires several new ideas and gets significantly more complicated. We provide an overview
of the reduction in Section 2.1.

2

Third, we consider a constrained version of BEST INTERVAL APPROXIMATION, where we are given
a complete signed graph and a parameter ε > 0. Now, we are only allowed to use k distinct intervals
and each node must be assigned to one of them. This provides highly interpretable insights since
the number of intervals is small. For this problem, we provide a polynomial-time approximation
scheme (PTAS); specifically, we present an algorithm that computes a (1 + ε)-approximation in
time 2O(k2 log(k/(εδ))/ε3) · n. This generalizes an algorithm by Giotis and Guruswami [27] that was
developed for CORRELATION CLUSTERING with a fixed number of clusters. We provide an overview
of the PTAS in Section 2.2.

Fourth, from a practical point of view, we introduce heuristics that we describe in Section 3. Our
heuristics are inspired by the PTAS above and include several practical improvements. Our experi-
ments find that BEST INTERVAL APPROXIMATION is substantially more expressive than CORRE-
LATION CLUSTERING and that our heuristic algorithms succeed in exploiting this expressivity. On
8 real-world datasets, our methods find overlapping opinion interval assignments that represent the
data with 38% fewer disagreements on average compared to CORRELATION CLUSTERING solutions
found by state-of-the-art methods. This holds even when we use only 8 intervals, showing that already
a small number of intervals yields expressive and interpretable representations.

Furthermore, we perform a case study on a novel dataset based on co-voting behavior in the German
parliament, which we make publicly available. The output of our algorithm allows us to reconstruct
the leaning of the political parties, as we demonstrate in Figure 1. Besides accurately reflecting the
German political spectrum, the figure also reveals the coalition governments throughout the past
decade (see Section 4). We stress that, due to the overlapping spectrum from the left to the right,
finding such a structure would not be possible in existing problems like CORRELATION CLUSTERING.

We conclude the paper with several interesting questions for further research in Section 5, and present
our proofs and additional experimental results in the supplementary material.

Related work. The BEST INTERVAL APPROXIMATION problem is closely related to the SITTING
ARRANGEMENT problem by Kermarrec and Thraves [33]: Given a signed graph G = (V,E+ ∪E−),
can we assign a vector xu ∈ Rℓ to each u ∈ V such that for all positive edges {u, v} ∈ E+

and negative edges {u,w} ∈ E− the inequality ∥xu − xv∥2 < ∥xu − xw∥2 holds? Kermarrec
and Thraves [33] presented several results for the case of ℓ = 1, i.e., embedding G into the real
line. Cygan et al. [22] improved upon this and showed that for a complete signed graph G such an
assignment exists if and only if the subgraph induced by its positive edges G+ = (V,E+) is a unit
interval graph [58]. Given this characterization, we note that our problem is more expressive since we
allow general (non-unit) intervals. Besides these theoretical insights, Pardo et al. [54, 55] provided
heuristics for an optimization version that aims to minimize the number of violated constraints on the
vectors xu above. However, this objective is substantially different from ours and thus incomparable.

As mentioned before, CORRELATION CLUSTERING [4] is highly related to our work and is stated
as follows: Given a signed graph G = (V,E+ ∪ E−), partition its vertices into disjoint clusters
C1, . . . , Ck ⊆ V such that the number of positive edges within the clusters Ci and the number of
negative edges between different clusters Ci and Cj , i ̸= j, is maximized. Here, the value of k can be
picked by the algorithm. CORRELATION CLUSTERING has received a lot of attention in the past two
decades in social network analysis and image segmentation, spanning approximation algorithms [13,
59, 27, 20, 18, 17], more expressive formulations [7], and results in dynamic, online, parallel, and
streaming settings [16, 15, 19, 3, 40, 50, 42]. There has also been continued interest in developing
heuristics [49, 1, 60, 65, 41, 6, 9]. We refer to the book by Bonchi et al. [8] for more references.

Another closely related problem is that of (Unit) Interval Editing. Specifically, in (Unit) Interval
Editing, the task is to transform an unsigned graph into a (unit) interval graph using a minimum
number of edge deletions and insertions. This problem is known to be NP-hard already since the
seminal work of Garey and Johnson [26] and it is fixed-parameter tractable (FPT) when parameterized
by the number of edge insertions and deletions [11, 32, 63, 12]. We further discuss the relation of
BEST INTERVAL APPROXIMATION to these problems in Section 2.

Opinion formation models, such as the DeGroot model [24], the Friedkin–Johnsen model [25], or
the bounded-confidence model [37, 23], are also related. These models have recently received a
significant amount of attention in computer science and machine learning [52, 64, 66, 61] and assign
a real-valued opinion to each node in a graph, which allows a more fine-grained understanding of con-
flicts than CORRELATION CLUSTERING. However, estimating the parameters of such models is highly

3

challenging and requires more information than the edge signs of a signed graph [5, 44, 43]. Thus, our
method is more easily applicable as it requires substantially less (and particularly less sensitive) data.

In relation to our case study on the German parliament, the (DW)-NOMINATE algorithm [56, 57, 51]
also predicts ideological positions of legislators based on co-voting data. It models legislators and
roll-call votes as a signed bipartite graph and applies maximum-likelihood estimation to infer each
legislator’s ideological location in a low-dimensional Euclidean space, together with a Gaussian
utility function centered at that point. However, since (DW)-NOMINATE operates on a bipartite graph,
it is not applicable in more general social network settings where the input is given as a unipartite
graph. This is in contrast to our methods, which only require a unipartite signed graph as input.

Finally, a further area of related work considers slightly different objectives than CORRELATION
CLUSTERING for partitioning signed graphs to reveal community structures [21, 39, 14, 53, 62].
However, similar to CORRELATION CLUSTERING, most of these methods do not allow finding
overlapping communities. Thus, they cannot explicitly consider individual tolerance of other opinions
in a way comparable to opinion intervals.

Preliminaries. A signed graph G = (V,E+ ∪ E−) is given by its vertices V , positive edges E+,
and negative edges E−, where E+ ∩ E− = ∅. It is complete if E+ ∪ E− =

(
V
2

)
. For u ∈ V , we

write N+(u) to denote its neighbors in E+ and N−(u) to denote its neighbors in E−.

A graph G = (V,E) is an interval graph if we can assign an interval Iv ⊂ R to all vertices v ∈ V
such that for all u, v ∈ V , it holds that {u, v} ∈ E if and only if Iu ∩ Iv ̸= ∅. Additionally, we say
that G is a unit interval graph if all intervals have length 1.

2 Problem Definition and Theoretical Results

In this section, we define our novel problem and state our main theoretical results.
Problem 2.1 (BEST INTERVAL APPROXIMATION). Given a signed graph G = (V,E+ ∪E−), find
a set I = {Iv ⊂ R : v ∈ V } of non-empty, contiguous intervals that maximizes

agree(G, I) =
∑

{u,v}∈E+

1(Iu ∩ Iv ̸= ∅) +
∑

{u,v}∈E−

1(Iu ∩ Iv = ∅), (1)

where 1(E) is indicator function, which takes value 1 if E is true and 0 otherwise.

Intuitively, the problem assigns an interval Iv to each vertex v and asks that two intervals overlap if
their corresponding vertices are connected with a positive edge and do not overlap if their vertices are
connected with a negative edge. To connect this problem to opinions, we may consider an interval Iv
for a node v as the range of opinions that are acceptable to v. The length |Iv| can further be seen as a
measure of v’s tolerance towards the opinion spectrum to the left and to the right.

We will refer to the formulation in Theorem 2.1 as the agreement version of BEST INTERVAL
APPROXIMATION, which asks to satisfy as many edges as possible. We will also talk about the
disagreement version, which aims to minimize the number of edges violating the interval assignment.
Their complexity is the same for exact solutions, but they differ w.r.t. approximation guarantees.

v1

v2

v3

1
2

3

−

+ +

Figure 2: A triangle with one
negative edge and its (exact)
interval representation.

Relationship to CORRELATION CLUSTERING. Next, we observe that
BEST INTERVAL APPROXIMATION is more expressive than CORRE-
LATION CLUSTERING: First, consider any CORRELATION CLUSTER-
ING solution C1, . . . , Ck, and consider k non-overlapping intervals
I1, . . . , Ik. Now we assign each vertex in Ci to the same interval Ii.
Thus, if u, v ∈ Ci, then their intervals overlap, and, if u ∈ Ci and
v ∈ Cj for i ̸= j, then their intervals do not overlap. This implies
that the optimal solution of BEST INTERVAL APPROXIMATION will
always yield an agreement at least as large as for CORRELATION
CLUSTERING. Second, our interval representation is strictly more
expressive and, for instance, allows us to model non-transitive node
relationships and this property is illustrated in Figure 2. This is neither
possible in CORRELATION CLUSTERING nor in the structural balance
theory of Harary [28], in both of which no cycle with exactly one
negative edge can be represented without error.

4

The case of complete graphs and relationship to Interval Editing. If G is a complete signed graph then
it can be represented without error in BEST INTERVAL APPROXIMATION if and only if G+ = (V,E+)
is an interval graph. That is because missing edges in G+ correspond to negative edges in G (since
G is complete). Thus, making the minimum number of edge deletions/insertions to turn G+ into
an interval graph is equivalent to flipping the minimum number of edge signs in G such that we
have agreement for all edges. Hence, for complete graphs, we can rely on the rich literature on
Interval Editing which asks for the minimum number of edge changes to G+ such that it becomes an
interval graph. The results of Cao [10] now imply that BEST INTERVAL APPROXIMATION is FPT for
complete graphs when only allowing a fixed number of sign changes (in one direction). However, in
social networks this number will be large for real-world instances and thus these algorithms are not
applicable in practice. Furthermore, our hardness results show that such FPT results are not possible
in incomplete graphs when parameterized by the number of required edge deletions (see Section 2.1).

2.1 Computational hardness

Next, we show that BEST INTERVAL APPROXIMATION is NP-hard. We show this by using a
reduction from the NP-complete problem ACYCLIC DIGRAPH PARTITION [22], where we are given
a directed graph H = (V,E) and have to decide whether one can partition V into two sets V1 and V2,
such that both H[V1] and H[V2] are directed acyclic graphs.

Our hardness result is stated below. In the theorem, we say that an interval representation is conflict-
free if it achieves agreement for all edges, i.e., if Equation (1) equals the number of edges in the
graph. Further, we will consider the minimum number of edge deletions required to make the graph
conflict-free, which is identical to the optimal objective function value for the disagreement version
of BEST INTERVAL APPROXIMATION.1

Theorem 2.2. There exists a polynomial-time algorithm that, given an instance H = (V,E) of
ACYCLIC DIGRAPH PARTITION, outputs an instance G = (V ′, E+ ∪ E−) of BEST INTERVAL
APPROXIMATION with the following properties: (1) H is a YES-instance if and only if a conflict-free
interval representation of G exists. (2) If H is a NO-instance, then only a single edge deletion is
required to obtain a conflict-free interval representation of G. (3) |V ′| = O(|V |), |E+∪E−| <

(|V ′|
2

)
,

and G+ = (V ′, E+) is a cycle. Thus, BEST INTERVAL APPROXIMATION is NP-hard.

The theorem has several implications for BEST INTERVAL APPROXIMATION in incomplete graphs:
(1) The disagreement version is hard to approximate within any factor. (2) It is not FPT when
parameterized by the number of required edge deletions (unless P = NP), separating it from the
problem in complete graphs. (3) The result holds even when restricted to graphs G = (V ′, E+ ∪E−)
where G+ = (V ′, E+) is a chordless cycle. This is intriguing because many algorithmic results on
interval graphs rely on detecting forbidden induced subgraphs like chordless cycles of four or more
vertices [10, 63, 36]. Our hardness result implies that detecting these forbidden structures is NP-hard
for incomplete signed graphs.

We prove Theorem 2.2 in Section A, where we construct a new graph G from an ACYCLIC DIGRAPH
PARTITION instance H , and show that G can be represented conflict-free if and only if H is a
YES-instance. In G, we introduce two auxiliary vertices L and R and we show that all vertices
whose intervals overlap with the interval of L (R) must be in partition V1 (V2) in the optimal solution
of ACYCLIC DIGRAPH PARTITION. Thus, the overlap structure of the intervals encodes a partition
of the vertices of H . Crucially, we use negative edges to enforce a topological ordering over these
partitions and the induced subgraphs H[V1] and H[V2], and we introduce further auxiliary vertices
to ensure that G forms a cycle.

2.2 A PTAS for fixed k in complete graphs

From an algorithmic perspective, we provide a PTAS when G is a complete graph and when each
vertex must be assigned to one of k intervals, where k = O(1). Formally, we study a version of BEST
INTERVAL APPROXIMATION in which we must find k intervals I1, . . . , Ik ⊂ R and each vertex
v ∈ V must be assigned to one of these intervals. In practice, the small number of intervals makes

1This is the case since minimizing the number of edges violating the interval assignment is equivalent to
deleting a minimum number of edges such that for the remaining graph (after the edges were deleted) there
exists a conflict-free interval representation.

5

the results highly interpretable. Additionally, it applies to scenarios such as analyzing political votes,
where we would like to have one interval representing each party, and the number of parties is small.
Our result for this restricted version of the problem is as follows.
Theorem 2.3. Let G be a complete signed graph and let ε > 0, δ > 0 and k ∈ N be parameters.
There exists an algorithm that, with probability at least 1− δ, returns a (1 + ε)-approximate solution
for BEST INTERVAL APPROXIMATION when the algorithm can only use k different intervals and it
runs in time 2O(k2 log(k/(εδ))/ε3) · n.

The complete description and analysis of the PTAS are provided in Section B. An overview to obtain
this result is as follows. Since k is fixed, we can enumerate all possible choices of k intervals with
respect to their overlap structure. Now, given a fixed set of k intervals, the main observation is that this
corresponds to a generalized instance of CORRELATION CLUSTERING where we are given k fixed
clusters that might overlap. Specifically, when two clusters Vi and Vj overlap, we want their vertices
to be connected by positive edges (rather than negative edges in the classic version of CORRELATION
CLUSTERING). Then, we show that we can generalize a PTAS from Giotis and Guruswami [27] as
described below.

We solve the generalized version of CORRELATION CLUSTERING by partitioning V into m = O(1/ε)
equally-sized subsets V1, . . . , Vm. Then, for each i = 1, . . . ,m, we proceed as follows. We sample
a set of vertices Si ⊆ V \ Vi of size Õ

(
1/ε2

)
. Now, we enumerate all possible assignments of

Si into (Si,1, . . . , Si,k), where Si,ℓ ⊆ Si are the vertices assigned to interval Iℓ, and for each such
assignment, we greedily assign the vertices v ∈ Vi to the interval that maximizes the agreement of
v’s edges to the clustering of Si given by (Si,1, . . . , Si,k). This process gives a clustering of Vi and
we show how the clusterings of the Vi can be merged to obtain a global clustering of V .

Our analysis is similar to that of [27] and shows that the sets Si are small enough such that enumerating
all assignments is not too expensive, and simultaneously large enough that for most vertices they
give us a good estimate for the agreement of their edges w.r.t. a fixed clustering. This is the key to
arguing that the greedy assignment will yield a good result when we consider the correct clustering
of the Si. In contrast to [27], we have to take into account the overlap of intervals when computing
the estimates. As for [27], the approach does not extend to incomplete graphs or large k, since then
the sets Si become too large and enumeration would not be possible anymore.

3 Heuristic Algorithms

Next, we present our heuristic Greedy Agreement Interval Assignment (GAIA) for BEST INTERVAL
APPROXIMATION, which is given intervals I1, . . . , Ik as input to which all vertices must be assigned.

We use the following notation. For an interval Iℓ we let overlap(ℓ) = {ℓ′ : Iℓ ∩ Iℓ′ ̸= ∅} denote
the set of intervals Iℓ′ that overlap with Iℓ. Furthermore, we will consider disjoint vertex clusters
C1, . . . , Ck ⊆ V that correspond to an assignment of the vertices to the intervals, i.e., Cℓ contains all
vertices assigned to interval Iℓ. Now, for a vertex u and C1, . . . , Ck as before, we write

agree(u, ℓ, (C1, . . . , Ck)) =
∑

ℓ′∈overlap(ℓ)

∣∣N+(u) ∩ Cℓ′
∣∣+ ∑

ℓ′ ̸∈overlap(ℓ)

∣∣N−(u) ∩ Cℓ′
∣∣

for the number of agreeing edges when assigning vertex u to interval Iℓ for the clustering C1, . . . , Ck.

Now, we describe GAIA and state its pseudocode in Algorithm 1. GAIA is based on iterative refinement:
After computing an initial greedy assignment of all vertices, the solution is improved by reassigning
vertices in multiple epochs. This reassignment procedure is carried out in batches to avoid local
minima. In each epoch, the vertex set is partitioned into random batches V1, . . . , Vm, and the
algorithm iterates over these batches one at a time. When processing a batch Vi, all vertices in the
batch are first unassigned and then reassigned using the greedy procedure described below. This can
be viewed as a practical version of PTAS from Theorem 2.3, where, instead of brute-forcing solutions
on out-of-batch vertices, the algorithm leverages the previously constructed greedy solution.

The core of GAIA is the greedy assignment of vertices in Vi to intervals in Algorithm 1–8 in Algo-
rithm 1. Here, each vertex v ∈ Vi is assigned to the interval Iℓ (and its corresponding cluster Cℓ)
that maximizes agree(v, ℓ, (C1, . . . , Ck)) (breaking ties at random). Crucially, we assign the vertices
with the highest agreement values first, as these vertices are easier to assign and their assignment
provides more information when assigning later vertices.

6

Algorithm 1: Greedy Agreement Interval Assignment (GAIA)
Input: Signed graph G = (V,E+ ∪ E−), intervals I1, . . . , Ik
Output: Interval assignment (C1, . . . , Ck) where Cℓ are the vertices assigned to interval Iℓ

1 Compute an initial assignment of the vertices to the intervals;
2 for each epoch do
3 Randomly partition V into m sets V1, . . . , Vm of size n

m each;
4 for i = 1, . . . ,m do
5 Cℓ ← Cℓ \ Vi for all ℓ = 1, . . . , k; // Unassign all vertices in Vi

6 for v ∈ Vi in order of maximum agreement do
7 ℓ← argmaxℓ=1...k agree(v, ℓ, (C1, . . . , Ck));
8 Cℓ ← Cℓ ∪ {v}; // Assign v to Iℓ
9 return (C1, . . . , Ck);

We also provide a version of GAIA called Variable ENergy Uphill Search (VENUS), which additionally
uses simulated annealing [35] to further increase the variability of its solutions. In VENUS, vertices
are not necessarily assigned to the interval that maximizes agree(v, ℓ, (C1, . . . , Ck)), but instead,
each vertex is assigned to an interval selected probabilistically according to a temperature-scaled
softmax distribution over agreement values. To that end, Algorithm 1 of Algorithm 1 is replaced with
ℓ ∼ softmaxℓ=1...k

agree(v,ℓ,(C1,...,Ck))
t . Here, t is a temperature parameter and controls the level of

randomness during the assignment. A temperature t close to 0 corresponds to a more greedy approach,
while higher temperatures lead to increasingly uniform random assignments. The annealing schedule
follows exponential decay: the temperature is initialized at t0 and multiplied by a decay factor
α ∈ (0, 1) after every τ epochs. This gradually reduces randomness and encourages convergence.

4 Experiments

Next, we experimentally evaluate our algorithms. Our code is available in a GitHub repository.2 We
aim to answer the following research questions:

(RQ1) Does BEST INTERVAL APPROXIMATION yield a substantial increase in expressiveness
compared to CORRELATION CLUSTERING?

(RQ2) How computationally efficient and scalable are our proposed algorithms?
(RQ3) What is the trade-off between solution quality and the number of intervals?
(RQ4) Are the solutions produced by our method interpretable?
(RQ5) Are our algorithms able to recover ground-truth interval structures?

We evaluate our algorithms on real-world datasets from SNAP [45] and KONECT [38]. We further
provide a novel dataset based on voting data from the German Bundestag (parliament) between the
years of 2012 and 2025 and make it available in our repository. In this dataset, each Bundestag
member corresponds to a vertex in the graph, and two members are connected by a positive edge
if they vote the same way in at least 75% of the sessions they both attended. Conversely, they are
connected by a negative edge if their votes align in 25% of sessions or less.

In our experiments, we evaluate our base algorithm, GAIA, as well as the VENUS variant that uses
simulated annealing. For VENUS, we use an initial temperature of 100 and a decay factor of 2/3,
applied every 5 epochs. Both are run with 10 batches for vertex reassignment. For the interval
structure that our algorithms receive as input, unless stated otherwise, we use a chain-like structure
of 8 intervals, where each interval overlaps with the next, e.g., [0, 1], [1, 2], . . . , [7, 8], and we call
this interval structure an 8-Chain. This structure was chosen to find a trade-off between increased
expressivity and intuitive interpretation (see also discussion of RQ3 below). Where applicable,
experiments were repeated 50 times on different random seeds, and standard deviations are reported.

Numerous approaches have been proposed for solving CORRELATION CLUSTERING in social
networks analysis [48, 9, 30, 29] and in computer vision [34, 65, 41, 1]. To provide a representative
performance overview, we selected four state-of-the-art algorithms for comparison:

2https://github.com/Peter-Blohm/discovering_opinion_intervals

7

https://github.com/Peter-Blohm/discovering_opinion_intervals

Table 1: Overview of the best solutions found by the algorithms. Reported is the percentage (%)
of edges violated (lower is better). Our algorithms use the 8-Chain interval structure while the
CORRELATION CLUSTERING algorithms use an unrestricted number of clusters.

Our algorithms CORRELATION CLUSTERING baselines

Dataset |V | |E| |E+|
|E| GAIA VENUS GAEC GAECKLj SCMLEvo RAMA Improvement

BitcoinOTC 5 881 21 434 0.85 3.32 3.55 5.58 5.57 5.57 5.64 40.39%
Chess 7 301 32 650 0.58 19.82 19.63 28.64 28.10 27.33 39.98 28.17%
WikiElec 7 115 100 355 0.78 11.24 11.26 14.13 14.13 14.13 14.45 20.45%
Bundestag 1 480 397 497 0.81 0.25 0.25 3.06 2.95 2.95 3.72 91.53%
Slashdot 82 140 498 532 0.76 9.05 8.94 13.75 13.66 13.52 17.17 33.88%
Epinions 131 580 708 507 0.83 4.47 4.42 6.83 6.68 6.67 6.86 33.73%
WikiSigned 138 587 712 337 0.88 4.94 4.85 6.17 6.17 6.17 6.96 21.39%
WikiConflict 116 836 2 014 053 0.38 3.44 3.43 5.87 5.82 5.82 6.02 41.06%

• GAEC [34]: A method that incrementally merges clusters to minimize disagreement.

• GAECKLj [34]: An extension of GAEC that additionally applies local search postprocessing.

• SCMLEvo [29]: An algorithm combining multilevel local search with evolutionary techniques.

• RAMA [1]: An algorithm using polyhedral relaxation and message passing to guide cluster merging.

For each of these algorithms, we run the authors’ publicly available implementations. In contrast to
our algorithms, which only use 8 intervals, the baselines may use an unrestricted number of clusters.

Throughout our experiments, we report the disagreement, i.e., the fraction of violated edges in
solutions found across all real-world datasets (rather than the number of agreeing edges as in
Equation (1)), as this makes the algorithms’ performance easier to compare. Further details on the
experiment setup, as well as additional results, are described in Section C.

Expressivity analysis (RQ1). To compare the expressivity of BEST INTERVAL APPROXIMATION with
CORRELATION CLUSTERING, we run our algorithms and the baselines on the real-world datasets.
The results in Table 1 show that our algorithms consistently find interval assignments that achieve
20% to 90% fewer disagreements than the best CORRELATION CLUSTERING solution. Across
all datasets, our results have 38% less disagreement on average, even though our methods only
use 8 intervals, whereas the CORRELATION CLUSTERING baselines use an unrestricted number
of clusters. Hence, our heuristic algorithms manage to effectively use the increased expressivity
of the overlapping interval structure. Additionally, we find that VENUS tends to outperform GAIA
slightly, particularly for larger graphs.

Computational efficiency (RQ2). Next, we assess the runtime efficiency of our algorithms by tracking
the progression of the objective value over time. Representative results for Slashdot are presented in
Figure 3a. GAIA makes the most progress in the first 15 seconds, followed by slower, incremental
gains. VENUS exhibits a similar pattern, though slightly delayed, likely due to its initially high
temperature which slows early convergence. However, this high initial temperature appeared to be
necessary to achieve improvement over GAIA’s results. In most instances, both heuristics stopped
after 50 epochs without improvement in the first five minutes of runtime, with GAIA often terminating
after a few seconds. The algorithms’ running time until convergence scales approximately linearly in
the number of edges and on all datasets our methods terminate within 30 minutes; we also elaborate
on this in the appendix.

Number of intervals (RQ3). To investigate the relationship between the number of intervals and
the solution quality, we ran our algorithms with 4, 8, 12, and 16 intervals. As for the 8-Chain, in
each interval structure, every interval overlaps with its successor and predecessor. In Figure 3a, we
illustrate the convergence behavior, and Figure 3b presents the solution quality after convergence, both
on the Slashdot dataset. Our results show that using only 4 intervals leads to poor solution quality
compared to the higher numbers, suggesting that such a limited structure may not adequately capture
the complexity of the graph. While the solution quality improves with more intervals, 8 intervals
seem sufficiently expressive for this graph, with only marginal improvements beyond that. This
behavior is typical for other problem instances as well. Again, we see that VENUS tends to perform
slightly better, and most notably, its results have much less variance compared to GAIA.

8

45k

50k

55k

0s 25s 50s 75s 100s 125s

Runtime

D
is

ag
re

e
m

e
n

t

Algorithm GAIA VENUS

Number of Intervals 4 8 12 16

(a) Objective value over time.

45k

50k

55k

4 8 12 16

Number of Intervals

D
is

ag
re

e
m

e
n

t

Algorithm GAIA VENUS

(b) Final objective for different interval structures.

Figure 3: Performance of our algorithms with different configurations on the Slashdot dataset.

Interpretability (RQ4). To study the interpretability of our solutions, we perform a case study on
the Bundestag dataset. We present a representative solution found by VENUS in Figure 1. As the
dataset models co-voting behavior of politicians, we expect our interval representation to resemble the
German political spectrum, and, indeed, this is the case. Our result assigns most members from the
same party to the same or neighboring intervals. For each party, except the FDP, we can identify one
interval consisting mainly of members of that party. We note that the slight splitting up of parties is
natural due to government coalitions they formed throughout the years. Also, the behavior of the FDP
can be traced back to different coalition governments they were part of (they formed governments
with the conservative CDU/CSU, as well as with the left/center GRÜNE and SPD). We consider the
ability of our algorithms to extract such highly overlapping structure as a substantial improvement
over CORRELATION CLUSTERING, and this is also emphasized by the objective function values
reported in Table 1, where our methods have 91% fewer disagreeing edges on this dataset.

Reconstruction of ground-truth data (RQ5). Next, we evaluate our algorithms on synthetic data. We
fix the 8-Chain and generate a graph with n = 800 vertices as follows. We assign n

8 vertices to each
interval, and we introduce edges with signs corresponding to the interval structure for d

(
n
2

)
random

pairs of vertices, where d ∈ [0, 1] is the desired density of the graph. Each edge obtains a correct edge
sign based on the interval structure with probability 1− p and we flip the sign with probability p. In
our experiments, we measure the relative change of the objective function achieved by our algorithms
compared to the ground-truth assignment in percent, agree(G,ground truth)−agree(G,ALG)

|E| · 100, and we
also report the accuracy with which vertices are assigned to their corresponding interval.

Figure 4 shows the result of our experiments. Without sign noise, the solutions are always within 6.5%
of the ground truth for VENUS, and within 12.5% of the ground truth for GAIA. We also obtain a high
accuracy in reconstructing the ground-truth assignment. With increasing sign noise, the true solution
becomes increasingly suboptimal to the point where both GAIA and VENUS find alternative solutions,
with better objective values than the ground truth (this is the case when we have negative y-axis
values in the plot). This increased objective value, however, comes at the cost of less accuracy in the
vertex assignment. The point at which alternative solutions become viable depends heavily on the
density of the graph, with denser graphs being more resilient to this phenomenon.

5 Conclusion

We introduced the BEST INTERVAL APPROXIMATION problem and showed that it is more expressive
than CORRELATION CLUSTERING, both theoretically and in experiments. We gave strong hardness
results for incomplete graphs, as well as a PTAS for complete graphs and fixed k. We also provided
efficient heuristics, which find interval assignments with significantly better objective values than
CORRELATION CLUSTERING solutions found by state-of-the-art algorithms, and we showed that
these interval assignments are highly interpretable.

We believe there are several interesting directions for future work, which we describe next.

From a more theoretical point of view, several problems remain unresolved. First, we conjecture that
in the agreement version of the problem (for k not fixed), the optimal solution can always satisfy
a 3

4 -fraction of the edges. This claim is supported by ILP-solutions that we computed on small

9

Sign Flip Probability
Density: 0.01

Sign Flip Probability
Density: 0.03

Sign Flip Probability
Density: 0.1

Sign Flip Probability
Density: 1

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

10

-40

-30

-20

-10

0

10

-40

-30

-20

-10

0

10

-40

-30

-20

-10

0

10

D
iff

e
re

n
c
e

 (
%

)

Sign Flip Probability
Density: 0.01

Sign Flip Probability
Density: 0.03

Sign Flip Probability
Density: 0.1

Sign Flip Probability
Density: 1

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
c
c
u

ra
cy

GAIA VENUS Random Assignment

Figure 4: Results on synthetic data. For different edge density levels |E| /
(|V |

2

)
, we report the nor-

malized difference agree(G,ground truth)−agree(G,ALG)
|E| averaged over 50 runs, and standard deviations.

Negative numbers indicate an improvement over the ground truth. Further, we report the accuracies
of the solution with the lowest disagreement. GAIA and VENUS reconstruct the ground truth under
considerable levels of noise in dense graphs, and find alternative, better solutions in sparse graphs.

instances, and it is tight, for instance, when taking two cliques with negative edges and connecting
each pair of their vertices with a positive edge. Second, it is interesting to study whether a PTAS
exists in this setting. Third, our hardness results do not allow us to rule out that for fixed k and
complete graphs a PTAS exists for the disagreement version of our problem. While the techniques of
Giotis and Guruswami [27] for CORRELATION CLUSTERING do not seem to extend to this setting,
obtaining such a result would be interesting.

From a modeling perspective, several extensions are well-motivated. First, a natural extension is to
move beyond one-dimensional intervals. Interestingly, neither our PTAS nor our heuristic algorithms
are inherently restricted to intervals on a line. Rather, they only require knowledge of which clusters
overlap and which do not. Hence, an empirical study using higher-dimensional intervals could allow
a more nuanced discovery of opinions along multiple axes. Second, it might be interesting to consider
temporal or dynamic settings in which opinion ranges expand or contract over time. Here, one could
consider making the opinion intervals expand or contract depending on the nodes’ centrality or the
homophily of their immediate neighborhood.

From a machine learning perspective, it is interesting to study whether methods like GNNs can
outperform our algorithms. This might be particularly promising when additional information, such
as node labels, are available, which can be exploited by the GNNs.

Acknowledgments and Disclosure of Funding

The authors thank the anonymous reviewers for their helpful comments, which have helped us to
improve the presentation of the paper. We further thank Sebastian Lüderssen for useful discussions.

This research has been funded by the Vienna Science and Technology Fund (WWTF) [Grant ID:
10.47379/VRG23013], the ERC Advanced Grant REBOUND [834862], the Swedish Research
Council (VR) [2024-05603], the European Commission MSCA DN ARMADA [101168951], and the
Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

10

References
[1] A. Abbas and Paul Swoboda. Rama: A rapid multicut algorithm on gpu. CVPR, pages

8183–8192, 2021.

[2] Samin Aref and Zachary P. Neal. Identifying hidden coalitions in the us house of representatives
by optimally partitioning signed networks based on generalized balance. Scientific Reports, 11,
2021.

[3] Sepehr Assadi, Vihan Shah, and Chen Wang. Streaming algorithms and lower bounds for
estimating correlation clustering cost. In NeurIPS, 2023.

[4] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn., 56(1-3):
89–113, 2004.

[5] Pablo Barberá. Birds of the same feather tweet together: Bayesian ideal point estimation using
twitter data. Political analysis, 23(1):76–91, 2015.

[6] Thorsten Beier, Thorben Kröger, Jörg H. Kappes, U. Köthe, and Fred A. Hamprecht. Cut, glue,
& cut: A fast, approximate solver for multicut partitioning. CVPR, pages 73–80, 2014.

[7] Francesco Bonchi, A. Gionis, and Antti Ukkonen. Overlapping correlation clustering. Knowl-
edge and Information Systems, 35:1–32, 2011.

[8] Francesco Bonchi, David García-Soriano, and Francesco Gullo. Correlation Clustering. Syn-
thesis Lectures on Data Mining and Knowledge Discovery. Springer, 2022.

[9] Michael J. Brusco and Patrick Doreian. Partitioning signed networks using relocation heuristics,
tabu search, and variable neighborhood search. Social Networks, 56:70–80, 2019.

[10] Yixin Cao. Linear recognition of almost interval graphs. In SODA, pages 1096–1115, 2016.

[11] Yixin Cao. Unit interval editing is fixed-parameter tractable. Inf. Comput., 253:109–126, 2017.

[12] Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms, 11(3):21:1–21:35, 2015.

[13] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. FOCS, pages 524–533, 2003.

[14] Kai-Yang Chiang, Joyce Jiyoung Whang, and Inderjit S. Dhillon. Scalable clustering of signed
networks using balance normalized cut. In CIKM, pages 615–624, 2012.

[15] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parot-
sidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In ICML,
volume 139, pages 2069–2078, 2021.

[16] Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and
consistent correlation clustering. In ICML, volume 162, pages 4157–4179, 2022.

[17] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation Clustering with
Sherali-Adams. In FOCS, pages 651–661, 2022.

[18] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated
rounding error via preclustering: A 1.73-approximation for correlation clustering. In FOCS,
pages 1082–1104, 2023.

[19] Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Dynamic
correlation clustering in sublinear update time. In ICML, 2024.

[20] Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan,
and Hanwen Zhang. Combinatorial correlation clustering. In STOC, pages 1617–1628. ACM,
2024.

11

[21] Mihai Cucuringu, Peter Davies, Aldo Glielmo, and Hemant Tyagi. SPONGE: A generalized
eigenproblem for clustering signed networks. In AISTATS, volume 89, pages 1088–1098. PMLR,
2019.

[22] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Sitting
closer to friends than enemies, revisited. Theory Comput. Syst., 56:394–405, 2015.

[23] Guillaume Deffuant, David Neau, Frederic Amblard, and Gérard Weisbuch. Mixing beliefs
among interacting agents. Advances in Complex Systems, 3(01n04):87–98, 2000.

[24] Morris H DeGroot. Reaching a consensus. J Am Stat Assoc, 69(345):118–121, 1974.

[25] Noah E Friedkin and Eugene C Johnsen. Social influence and opinions. Journal of Mathematical
Sociology, 15(3-4):193–206, 1990.

[26] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

[27] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. Theory Comput., 2(13):249–266, 2006.

[28] Frank Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal, 2
(2):143–146, 1953.

[29] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. Scalable multilevel and
memetic signed graph clustering. In ALENEX, pages 81–94, 2025.

[30] Jia-Lin Hua, Jian Yu, and Miin-Shen Yang. Fast clustering for signed graphs based on random
walk gap. Social Networks, 60:113–128, 2020.

[31] Kevin G. Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperpa-
rameter optimization. In AISTATS, pages 240–248, 2016.

[32] Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28:
1906–1922, 1999.

[33] Anne-Marie Kermarrec and Christopher Thraves. Can everybody sit closer to their friends than
their enemies? In MFCS, pages 388–399, 2011.

[34] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas Brox, and
Bjoern Andres. Efficient decomposition of image and mesh graphs by lifted multicuts. ICCV,
pages 1751–1759, 2015.

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[36] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy P. Spinrad. Certifying
algorithms for recognizing interval graphs and permutation graphs. SIAM J. Comput., 36(2):
326–353, 2006.

[37] Ulrich Krause. A discrete nonlinear and non-autonomous model of consensus formation.
Communications in Difference Equations, 2000, 07 2000. doi: 10.1201/b16999-21.

[38] Jérôme Kunegis. Konect: the koblenz network collection. WWW, 2013.

[39] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto William De
Luca, and Sahin Albayrak. Spectral analysis of signed graphs for clustering, prediction and
visualization. In SDM, pages 559–570. SIAM, 2010.

[40] Yuko Kuroki, Atsushi Miyauchi, Francesco Bonchi, and Wei Chen. Query-efficient correlation
clustering with noisy oracle. In NeurIPS, 2024.

[41] Jan-Hendrik Lange, Andreas Karrenbauer, and Bjoern Andres. Partial optimality and fast lower
bounds for weighted correlation clustering. In ICML, volume 80, pages 2892–2901, 2018.

12

[42] Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, and Rudy Zhou. Robust
online correlation clustering. In NeurIPS, pages 4688–4698, 2021.

[43] Jacopo Lenti, Corrado Monti, and Gianmarco De Francisci Morales. Likelihood-based methods
improve parameter estimation in opinion dynamics models. In WSDM, pages 350–359, 2024.

[44] Jacopo Lenti, Fabrizio Silvestri, and Gianmarco De Francisci Morales. Variational inference of
parameters in opinion dynamics models. CoRR, abs/2403.05358, 2024.

[45] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[46] Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. Predicting positive and negative
links in online social networks. In WWW, pages 641–650, 2010.

[47] Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. Signed networks in social media.
In CHI, pages 1361–1370, 2010.

[48] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. A comparative study of local search
algorithms for correlation clustering. In German Conference on Pattern Recognition, 2017.

[49] Mário Levorato, Rosa Figueiredo, Yuri Frota, and Lúcia M. A. Drummond. Evaluating balancing
on social networks through the efficient solution of correlation clustering problems. EURO
Journal on Computational Optimization, 5:467–498, 2017.

[50] Konstantin Makarychev and Sayak Chakrabarty. Single-pass pivot algorithm for correlation
clustering. keep it simple! In NeurIPS, 2023.

[51] Nolan McCarty, Keith T. Poole, and Howard Rosenthal. Income redistribution and the realign-
ment of American politics. AEI Press, 1997.

[52] Cameron Musco, Christopher Musco, and Charalampos E. Tsourakakis. Minimizing polariza-
tion and disagreement in social networks. In Pierre-Antoine Champin, Fabien Gandon, Mounia
Lalmas, and Panagiotis G. Ipeirotis, editors, WWW, pages 369–378. ACM, 2018.

[53] Stefan Neumann and Pan Peng. Sublinear-time clustering oracle for signed graphs. In ICML,
volume 162, pages 16496–16528, 2022.

[54] Eduardo G. Pardo, Mauricio Soto, and Christopher Thraves. Embedding signed graphs in the
line - heuristics to solve minsa problem. J. Comb. Optim., 29:451–471, 2015.

[55] Eduardo G. Pardo, Antonio García-Sánchez, Marc Sevaux, and Abraham Duarte. Basic variable
neighborhood search for the minimum sitting arrangement problem. J. Heuristics, 26:249–268,
2020.

[56] Keith T. Poole and Howard Rosenthal. Patterns of congressional voting. American Journal of
Political Science, 35:228, 1991.

[57] Keith T. Poole and Howard Rosenthal. Congress: A Political-Economic History of Roll Call
Voting. Oxford University Press, 1997.

[58] Fred S. Roberts. Indifference graphs. Proof Techniques in Graph Theory, pages 139–146, 1969.

[59] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite program-
ming. In SODA, 2004.

[60] Paul Swoboda and Bjoern Andres. A message passing algorithm for the minimum cost multicut
problem. CVPR, pages 4990–4999, 2016.

[61] Sijing Tu and Stefan Neumann. A viral marketing-based model for opinion dynamics in online
social networks. In WWW, pages 1570–1578, 2022.

[62] Ruo-Chun Tzeng, Bruno Ordozgoiti, and Aristides Gionis. Discovering conflicting groups in
signed networks. In NeurIPS, 2020.

13

http://snap.stanford.edu/data

[63] Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval completion is
fixed parameter tractable. SIAM J. Comput., 38(5):2007–2020, 2009.

[64] Yanbang Wang and Jon M. Kleinberg. On the relationship between relevance and conflict in
online social link recommendations. In NeurIPS, 2023.

[65] Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk, U. Köthe,
and Fred A. Hamprecht. The mutex watershed: Efficient, parameter-free image partitioning. In
ECCV, 2018.

[66] Liwang Zhu, Qi Bao, and Zhongzhi Zhang. Minimizing polarization and disagreement in social
networks via link recommendation. In NeurIPS, pages 2072–2084, 2021.

14

A Hardness Result

In this section, we prove our hardness result from Theorem 2.2. In the proof, we use the notation
I = [ℓ(I), r(I)], where ℓ(I) denotes the infimum and r(I) denotes the supremum of the interval.

A.1 Construction

We describe a reduction from an instance H = (V,E) of ACYCLIC DIGRAPH PARTITION to an
instance G = (V ′, E+ ∪E−) of BEST INTERVAL APPROXIMATION, where (V ′, E+) forms a cycle.

First, the set of vertices V ′ consists of:

1. Seven constant vertices V ′
c = {S,L,M,R, T,HS , HT }. These vertices will be used to

constrain the structure of the solution. With sets of negative edges, we will force any
conflict-free representation to assign each vertex in V to a sub-interval of either L or R. The
names of the vertices stand for start, left, middle, right, target, help-start, and help-target,
respectively.

2. Four vertices for each vertex v ∈ V : V ′
v = {Mv, Av, Xv, Bv}, where Xv corresponds to

the original vertex v in H and the other vertices are used to structure the instance.

Next, we define the set of positive edges E+ to form a cycle over V ′. For this, we use an arbitrary
ordering of V = {v1, . . . , vn}, and construct E+ as the union of the following sets:

1. E+
c = {{S,L}, {L,M}, {M,R}, {R, T}, {S,HS}, {HT , T}}

2. for all v ∈ V : E+
v = {{Mv, Av}, {Av, Xv}, {Xv, Bv}}

3. E+
V = {{HS ,Mv1}} ∪

⋃
i∈[1,n−1]{{Bvi ,Mvi+1

}} ∪ {{Bvn , HT }}

Finally, we construct E− as the union of the following sets:

1. E−
S = {{S, v′} : v′ ∈ V ′ \ {L,HS}}, E−

T = {{T, v′} : v′ ∈ V ′ \ {R,HT }}
We connect negatively S and T to each vertex in the graph besides their positive neighbors.
This forces IS and IT to be the outermost intervals in any conflict-free interval representation,
as otherwise the interval of some negatively connected vertex intersects either of them. See
Theorem A.1. To break symmetry, we assume without loss of generality that r(IS) < ℓ(IT).

2. E−
c = {{L,R}}

This edge ensures that IL and IR are disjoint, and in any conflict-free representation,
r(IL) < ℓ(IR), due to their respective positive edges to S and T .

3. E−
M =

⋃
v∈V {{Mv, L}, {Mv, R}}

These edges ensure that for all vertices v ∈ V the interval IMv lies in IM . See Theorem A.3.
4. E−

∗ = {{Xv,M} : v ∈ V }
These edges ensure that for all vertices v ∈ V , the interval IXv either lies in IL or in IR.
See Theorem A.4.

5. E−
V = {{Xu, Xv} : u, v ∈ V, u ̸= v}

These edges ensure that for all vertices u, v ∈ V with u ̸= v the intervals IXu
and IXv

are
disjoint.

6. E−
E =

⋃
(u,v)∈E{{Xv, Au}, {Xv, Bu}}

These edges enforce topological orderings of the vertices. See Theorem A.5.

This concludes the construction. We refer to Figure 5 for an illustration. It is clear that V ′, E+, and
E− have the sizes claimed in the theorem.

A.2 Structural lemmas

To prove the correctness of the reduction, we will make use of a few smaller results that describe
the structure of any conflict-free interval representation of G. First, notice that {S, T} ∈ E−, so for
any conflict-free interval representation, it must hold that IS ∩ IT = ∅. For the rest of this analysis,
assume without loss of generality r(IS) < ℓ(IT).

15

v1 v2

v3v4

V1 V2

(a) Directed graph instance for ACYCLIC DI-
GRAPH PARTITION

S L M R T

HS

v1
v2

v3
v4 HT

(b) Interval representation

Figure 5: Reduction from ACYCLIC DIGRAPH PARTITION

Lemma A.1. For any conflict-free interval representation of G it must hold that for all u ∈ V ′ \{S} :
r(IS) < r(Iu) and for all u ∈ V ′ \ {T} : ℓ(Iu) < ℓ(IT).

Proof. Towards a contradiction assume there exists a vertex u ∈ V ′ \ {S} such that r(Iu) ≤ r(IS).
As (V ′, E+) is a cycle, there exists a path from u to T that does not include S. The union Ip of the
intervals corresponding to the vertices in this path must form an interval itself. As r(Iu) ≤ r(IS), but
ℓ(IT) > r(IS), IS ∩ Ip ̸= ∅, and consequently there exists some vertex x ∈ V ′ \ {S}, x ̸= u along
this path such that IS ∩ Ix ̸= ∅. Note that by the construction of this path, x cannot be a positive
neighbor of S, as we explicitly choose one of the two paths from u to T that does not include S.
Then, {S, x} ∈ E−, leading to a contradiction. Finally, for all u ∈ V ′ \ {T} : ℓ(Iu) < ℓ(IT) holds
by a symmetric argument.

Lemma A.2. For any conflict-free interval representation of G it must hold that (i) for all u ∈
V ′ \ {S,L,HS} : r(IS) < ℓ(Iu) and (ii) for all u ∈ V ′ \ {T,R,HT } : r(Iu) < ℓ(IT).

Proof. Assume towards a contradiction that there exists a vertex u ∈ V ′ \ {S,L,HS} such that
ℓ(Iu) ≤ r(IS). From Theorem A.1, we know r(Iu) > r(IS), so it follows that Iu ∩ IS ̸= ∅.
However, since {S, u} ∈ E− this leads to a contradiction with the assumption of a conflict-free
interval representation. The proof for (ii) follows symmetrically.

Lemma A.3. For any conflict-free interval representation of G, it must hold that for all v ∈ V :
IMv
⊂ IM .

Proof. By construction, the open interval (r(IS), ℓ(IT)) ⊂ IL ∪ IM ∪ IR. From Theorem A.2, we
know that IMv

⊂ IL ∪ IM ∪ IR. Finally, as {Mv, L}, {Mv, R} ∈ E−, the claim holds.

Lemma A.4. For any conflict-free interval representation of G, it must hold that for all v ∈ V either
IXv ⊂ IL or IXv ⊂ IR but not both.

Proof. By construction, the open interval (r(IS), ℓ(IT)) ⊂ IL ∪ IM ∪ IR. From Theorem A.2, we
know that IXv

⊂ IL∪IM ∪IR. Furthermore, we know that IL∩IR = ∅. Finally, as {Xv,M} ∈ E−

the claim holds.

Building on this statement, we can further characterize the relative location of the intervals IXv
inside

IL and IR.

Lemma A.5. For any conflict-free interval representation of G it must hold that for all edges
(u, v) ∈ E if IXu

⊂ IR and IXv
⊂ IR, then r(IXu

) < ℓ(IXv
), and, symmetrically, if IXu

⊂ IL and
IXv
⊂ IL, then r(IXv

) < ℓ(IXu
)

Proof. As we assumed that r(IS) < ℓ(IT), it follows that ℓ(IM) < ℓ(IR) ≤ r(IM) < r(IR).
Towards a contradiction, assume there exists an edge (u, v) ∈ E such that IXu ⊂ IR and IXv ⊂ IR,
but ℓ(IXv) ≤ r(IXu). As in any conflict-free interval representation the intervals IXu and IXv

are disjoint, this implies that r(IXv) < ℓ(IXu). Now, consider the intervals IMu and IAu . From
Theorem A.3, we know that IMu

⊂ IM , hence r(IMu
) < ℓ(IXv

) < r(IXv
) < ℓ(IXu

). By

16

construction, IAu must overlap with IMu and IXu , hence ℓ(IAu) ≤ r(IMu) and r(IAu) ≥ ℓ(IXu).
However, this implies that IAu∩IXv ̸= ∅, leading to a violation of the {Xv, Au} constraint introduced
in E−

E . By symmetry, this also proves the case where IXu ⊂ IL and IXv ⊂ IL.

A.3 Proof of Theorem 2.2

Equipped with Theorems A.1 to A.5 we can now prove Theorem 2.2.

We first show that if H = (V,E) is a YES-instance of ACYCLIC DIGRAPH PARTITION, then the
constructed signed graph instance G has a conflict-free interval-representation in BEST INTERVAL
APPROXIMATION. Assume H[V1] and H[V2] are the two acyclic induced subgraphs of H corre-
sponding to the partition and let k = |V1|. Further, let [v(1,1), . . . , v(1,k)] and [v(2,1), . . . , v(2,n−k)]
be topological orderings of V1 and V2, respectively. Now, we define intervals for V ′

c as follows and
depicted in Figure 5:

IS := [0, 0.2], IL := [0.2, 0.4], IM := [0.4, 0.6], IR := [0.6, 0.8], IT := [0.8, 1], IHS
:= [0.1, 0.5],

IHT
:= [0.5, 0.9].

This satisfies the constraints set by E−
c . Then, for each v ∈ V , we assign IMv

= [0.45, 0.55]. This
satisfies all constraints imposed by E−

M . Next, we define

for all i ∈ {1, . . . , k} : IXv(1,i)
=

[
0.4− 2i+ 1

16k
, 0.4− 2i

16k

]
, and

for all i ∈ {1, . . . , n− k} : IXv(2,i)
=

[
0.6 +

2i

16(n− k)
, 0.6 +

2i+ 1

16(n− k)

]
.

This ensures that for all vertices u ∈ V1, the interval IXu
lies in (0.2, 0.4), and symmetrically for

all vertices v ∈ V2, the interval IXv
lies in (0.6, 0.8), hence satisfying E−

∗ . Further, for all vertices
u, v ∈ V with u ̸= v their intervals IXu

, IXv
are disjoint, thereby satisfying E−

V . To conclude the
construction of the interval representation, we set

for all v ∈ V1 : IAv
= IBv

= [ℓ(IXv
), 0.5], and

for all v ∈ V2 : IAv
= IBv

= [0.5, r(IXv
)].

Now, all the constraints set in E+, E−
S and E−

T are satisfied by construction. It is left to check whether
the constraints set by E−

E are satisfied. Here, IXv
must not overlap IAu

or IBu
if there exists a directed

edge (u, v) ∈ E. This is trivially satisfied if u ∈ V1 and v ∈ V2 or vice-versa. If both u, v ∈ V2, then
in the constructed interval representation we must have that ℓ(IXv

) > r(IAu
) = r(IBu

) = r(IXu
).

As the intervals {IXv
: v ∈ V2} were constructed according to a topological ordering of V2, this is

always satisfied. The argument works symmetrically for V1, and hence the interval representation is
conflict-free.

Conversely, suppose the constructed instance G admits a conflict-free interval representation in
BEST INTERVAL APPROXIMATION. We claim that this implies H is a YES-instance of ACYCLIC
DIGRAPH PARTITION. First, by Theorems A.1 and A.2, any conflict-free interval representation
places IS and IT at the extreme left and extreme right, respectively. Consequently, in the open interval(
r(IS), ℓ(IT)

)
, the intervals IL, IM , and IR appear in that left-to-right order. Next, Theorem A.3

guarantees that every interval IMv
for v ∈ V is contained in IM . Meanwhile, Theorem A.4 ensures

that each IXv
is contained entirely in either IL or IR. This setup naturally suggests a bipartition of

the set V :
V1 = { v ∈ V : IXv

⊂ IL} and V2 = { v ∈ V : IXv
⊂ IR}.

We claim that H[V1] and H[V2] must each be acyclic. Indeed, in Theorem A.5 we show that
for any directed edge (u, v) ∈ E with u, v ∈ V1, the intervals IXu and IXv in IL must satisfy
r(IXv) < ℓ(IXu). Hence, the interval IXv must lie to the left of IXu . This implies a topological
ordering of vertices in V1, and thus prevents directed cycles in H[V1]. A symmetric argument
shows that H[V2] is acyclic. Thus, H admits a partition of its vertex set into two DAGs H[V1] and
H[V2]. Therefore, H is a YES-instance of ACYCLIC DIGRAPH PARTITION, completing the proof of
Theorem 2.2.

17

B A PTAS for a Fixed Number of Intervals

We prove Theorem 2.3, which generalizes a result of Giotis and Guruswami [27] for the agreement
version of CORRELATION CLUSTERING in complete signed graphs and also for a fixed number of
clusters. Our analysis is similar to that of [27], but we have to adjust it such that we take into account
the overlap of the given intervals.

Interestingly, Giotis and Guruswami [27] also presented a PTAS for the disagreement version of
CORRELATION CLUSTERING. However, their result does not extend to BEST INTERVAL AP-
PROXIMATION, since in our setting we may have overlapping intervals and this breaks their greedy
assignment rule, as well as several of their technical arguments.

In the following, we consider a complete signed graph G = (V,E+ ∪ E−). We assume that we are
given k intervals I1, . . . , Ik ⊂ R as input. In the problem we consider, each vertex must be assigned
to one of the intervals such that agreement is maximized.

The main work of this section will go into the proof of the following proposition from which the rest
of our results follow.

Proposition B.1. Let ε > 0 and δ > 0. With probability at least 1 − δ, Algorithm 2 computes an
approximate solution with additive error at most εn2/2 and has running time kO(1/ε3 log(k/(εδ))) · n.

The proposition allows us to obtain Theorem B.2, which shows that we can obtain a multiplicative
(1+ε)-approximation guarantee for k fixed intervals. This then also implies the proof of Theorem 2.3.

Corollary B.2. Let ε > 0 and δ > 0. There exists an algorithm that computes a (1+ ε)-approximate
solution for BEST INTERVAL APPROXIMATION with k given intervals in time kO(1/ε3 log(k/(εδ))) · n
with probability at least 1− δ.

Proof. First, assume that all pairs of intervals overlap. Then it does not matter how we assign the
vertices because only the positive edges can be satisfied. In this case, any assignment will achieve
the same objective function value as OPT. Second, assume that there is at least one pair of non-
overlapping intervals. In that case, we know from CORRELATION CLUSTERING that the objective
function agreement must be Ω(n2) (see the proof of Theorem 3.1 in [27]). In that case, we can use the
result from Theorem B.1 to obtain a multiplicative (1 + ε)-approximation by making the parameter ε
in our additive approximation small enough. The running time claim follows from Theorem B.1.

Proof of Theorem 2.3. Note that we only need to consider at most 2(
k
2) choices for picking k intervals

(up to changing their coordinates): For any pair of intervals they either overlap or they do not. Thus,
since there

(
k
2

)
interval pairs, there are at most 2(

k
2) = 2O(k2) choices for the overlap.

Now we can just enumerate all possible overlap-patterns of k intervals and run the algorithm from
Theorem B.2 for it in time 2O(k2+1/ε3 log(k) log(k/(εδ))) · n ≤ 2O(k2 log(k/(εδ))/ε3) · n. Note that our
result is correct if the algorithm succeeds for the k intervals picked by OPT, and thus we get the
desired success probability (and in particular we do not have to apply a union bound that the algorithm
succeeds for all possible choices of 2O(k2) choices of intervals).

For the remainder of this section, we work on the proof of Theorem B.1.

We present the pseudocode of our method with full details in Algorithm 2. On a high level, our
algorithm works by partitioning V into m = O(1/ε) equally-sized subsets V1, . . . , Vm. Then,
for each i = 1, . . . ,m, we proceed as follows. We sample a set of vertices Si ⊆ V \ Vi of size
Õ
(
1/ε2

)
. Now, we enumerate all possible assignments of Si into (Si,1, . . . , Si,k), where Si,ℓ ⊆ Si

are the vertices assigned to interval Iℓ, and for each such assignment, we greedily assign the vertices
v ∈ Vi to the interval that maximizes the agreement of v’s edges to the clustering of Si given by
(Si,1, . . . , Si,k). This process gives a clustering of Vi and we build the final clustering by merging
our solutions for the Vi to obtain a global clustering of V .

For a high-level description of the algorithm, see Section 2.2.

Recall from the main text that we write overlap(ℓ) to denote the set of all intervals Iℓ′ that overlap
with interval Iℓ, i.e., overlap(ℓ) = {ℓ′ : Iℓ ∩ Iℓ′ ̸= ∅}. Furthermore, a clustering C1, . . . , Ck of V is

18

Algorithm 2: Maximizing agreement for fixed k

Input: A complete signed graph G = (V,E+ ∪ E−), contiguous and non-empty intervals
I1, . . . , Ik ⊂ R, ε > 0

Result: A clustering (ALG1, . . . ,ALGk) maximizing the agreement
1 Partition V into m = 4

ε sets V1, . . . , Vm of size n
m = εn

4 each;
2 Sample Si ⊆ V \ Vi uniformly at random with replacement of size s = 322

2ε2 log
(
64mk
εδ

)
for all

i = 1, . . . ,m;
3 Initialize some arbitrary clustering (ALG1, . . . ,ALGk);
4 for all possible clusterings of all Si into (Si,1, . . . , Si,k) do
5 for i = 1, . . . ,m do
6 Let ALG′

i,1, . . . ,ALG
′
i,k be an empty clustering of Vi;

7 for u ∈ Vi do
8 ℓ∗ ← argmaxℓ=1,...,k agree(u, ℓ, (Si,1, . . . , Si,k));
9 Assign u to ALGi,ℓ∗ ;

10 Set ALG′
ℓ ←

⋃m
i=1 ALG

′
i,ℓ for all ℓ = 1, . . . , k;

11 if agree(G, (ALG′
1, . . . ,ALG

′
k)) > agree(G, (ALG1, . . . ,ALGk)) then

12 Set (ALG1, . . . ,ALGk)← (ALG′
1, . . . ,ALG

′
k);

13 return (ALG1, . . . ,ALGk);

an assignment of the vertices V to intervals. In particular, Ci denotes all vertices which are assigned
to interval Ii. Note that the Ci are mutually disjoint. For a vertex u and a clustering C1, . . . , Ck we
write

agree(u, ℓ, (C1, . . . , Ck)) =
∑

ℓ′∈overlap(ℓ)

∣∣N+(u) ∩ Cℓ′
∣∣+ ∑

ℓ′ ̸∈overlap(ℓ)

∣∣N−(u) ∩ Cℓ′
∣∣

which is the number of agreeing edges of vertex u for the clustering C1, . . . , Ck when assigning u to
interval Iℓ. Similarly, we define

agree+(u, ℓ, (C1, . . . , Ck)) =
∑

ℓ′∈overlap(ℓ)

∣∣N+(u) ∩ Cℓ′
∣∣ ,

and
agree−(u, ℓ, (C1, . . . , Ck)) =

∑
ℓ′ ̸∈overlap(ℓ)

∣∣N−(u) ∩ Cℓ′
∣∣ .

For the analysis we consider an optimal clustering denoted by OPT = (OPT1, . . . ,OPTk). Here,
OPTℓ ⊆ V consists of all vertices that get assigned to interval Iℓ in the optimal solution.

We set OPTi,ℓ = Vi ∩ OPTℓ. Note that OPTi = (OPTi,1, . . . ,OPTi,k) is the clustering of OPT
when constrained on the vertices in Vi.

Next, we construct a set of hybrid clusterings that use a part of our solution from ALG and a part of
the solution from OPT. In particular, we set

Hi,ℓ =

i−1⋃
j=1

ALGj,ℓ

 ∪
 m⋃

j=i

OPTj,ℓ

 .

Note that Hi,ℓ corresponds to a hybrid between ALGℓ and OPTℓ where all vertices in V1, . . . , Vi−1

are clustered based on ALGℓ and all vertices in Vi, . . . , Vm are clustered based on OPTℓ.

Now, additionally we setHi,ℓ = Hi,ℓ \ Vi, i.e., these are all vertices in Hi,ℓ which are not contained
in Vi and thus they will be clustered either before or after the i’th iteration of our algorithm. We set
Hi = (Hi,1, . . . ,Hi,k) and note that Hi is a solution for all vertices (not just the vertices in Vi). In
particular, note that H1 = OPT and Hm+1 = ALG. Additionally, we setHi = (Hi,1, . . . ,Hi,k) for
the clustering given by Hi after removing the vertices in Vi.

For the rest of the analysis, for all i = 1, . . . ,m, we consider the clustering Si,1, . . . , Si,k of Si that
agrees with the hybrid clustering, i.e., we assume that Si,ℓ = Si ∩Hi,ℓ. Note that this clustering must
be considered by the algorithm since we exhaustively enumerate all possible clusterings of all Si.

19

Lemma B.3. Let i ∈ {1, . . . ,m}. With probability at least 1− δ
4m over the randomness in Si the

following event happens: For at least a (1− ε/8)-fraction of the vertices u ∈ Vi it holds that for all
ℓ = 1, . . . , k,

∣∣∣∣ |V \ Vi|
s

agree+(u, ℓ, (Si,1, . . . , Si,k))− agree+(u, ℓ, (Hi,1, . . . ,Hi,k))

∣∣∣∣ ≤ ε

32
|V \ Vi| . (2)

Proof. Consider any u ∈ Vi and let Si = {v1, . . . , vs}. For ℓ = 1, . . . , k and j = 1, . . . , s, let Xj,ℓ

be the indicator random variable which is 1 if vj ∈ N+(u) and vj ∈ Si,ℓ′ for some cluster with
ℓ′ ∈ overlap(ℓ), and 0 otherwise.

Note that
∑s

j=1 Xj,ℓ = agree+(u, ℓ, (Si,1, . . . , Si,k)) and that the Xj,ℓ are i.i.d. random variables

with expectation E[Xj,ℓ] = Pr(Xj,ℓ = 1) =
agree+(u,ℓ,(Hi,1,...,Hi,k))

|V \Vi| . Now an additive Chernoff
bound gives that

Pr

(∣∣∣∣agree+(u, ℓ, (Si,1, . . . , Si,k))

s
− agree+(u, ℓ, (Hi,1, . . . ,Hi,k))

|V \ Vi|

∣∣∣∣ > ε

32

)
< 2 exp

(
−2

(ε

32

)2

s

)
<

εδ

32mk
.

Note that this gives us the inequality from the lemma after multiplying with |V \ Vi| on both sides.

Now let Y be the random variable denoting the number of vertices in Vi which do not satisfy the
inequality above. Observe that E[Y] < εδ

32mk |Vi|. By Markov’s inequality, we get that the inequality
holds for all but ε

8 |Vi| vertices with probability at least 1− δ
4mk .

Now the lemma follows by applying a union bound.

We note that the lemma also holds for agree−(u, ℓ, (Si,1, . . . , Si,k)) with the same proof.

Lemma B.4. For i = 0, . . . ,m it holds that agree(G,Hi+1) ≥ agree(G,OPT)− i · 18ε
2n2.

Proof. Consider some iteration i of the algorithm. Note that in this iteration only the vertices in Vi are
assigned to clusters and thus Hi and Hi+1 only differ by the vertices contained in Vi. Therefore, our
proof will proceed by considering a vertex u ∈ Vi that gets assigned to interval Iℓ by the algorithm
but to interval Iℓ′ in the solution Hi.

First, observe that since the algorithm assigned u to interval Iℓ we must have that

agree+(u, ℓ, (Si,1, . . . , Si,k)) + agree−(u, ℓ, (Si,1, . . . , Si,k))

≥ agree+(u, ℓ′, (Si,1, . . . , Si,k)) + agree−(u, ℓ′, (Si,1, . . . , Si,k))

which implies that

agree+(u, ℓ′, (Si,1, . . . , Si,k)) + agree−(u, ℓ′, (Si,1, . . . , Si,k))

− agree+(u, ℓ, (Si,1, . . . , Si,k))− agree−(u, ℓ, (Si,1, . . . , Si,k)) ≤ 0.

20

Now set αi =
|V \Vi|

s and assume that u is a vertex satisfying Equation (2). Observe that the number
of agreements we might lose by this misplacement is at most

agree(u, ℓ′, (Hi,1, . . . ,Hi,k))− agree(u, ℓ, (Hi,1, . . . ,Hi,k))

= agree+(u, ℓ′, (Hi,1, . . . ,Hi,k)) + agree−(u, ℓ′, (Hi,1, . . . ,Hi,k))

− agree+(u, ℓ, (Hi,1, . . . ,Hi,k))− agree−(u, ℓ, (Hi,1, . . . ,Hi,k))

= agree+(u, ℓ′, (Hi,1, . . . ,Hi,k)) + αiagree+(u, ℓ′, (Si,1, . . . , Si,k))− αiagree+(u, ℓ′, (Si,1, . . . , Si,k))

+ agree−(u, ℓ′, (Hi,1, . . . ,Hi,k)) + αiagree−(u, ℓ′, (Si,1, . . . , Si,k))− αiagree−(u, ℓ′, (Si,1, . . . , Si,k))

− agree+(u, ℓ, (Hi,1, . . . ,Hi,k)) + αiagree+(u, ℓ, (Si,1, . . . , Si,k))− αiagree+(u, ℓ, (Si,1, . . . , Si,k))

− agree−(u, ℓ, (Hi,1, . . . ,Hi,k)) + αiagree−(u, ℓ, (Si,1, . . . , Si,k))− αiagree−(u, ℓ, (Si,1, . . . , Si,k))

≤
∣∣agree+(u, ℓ′, (Hi,1, . . . ,Hi,k))− αiagree+(u, ℓ′, (Si,1, . . . , Si,k))

∣∣
+

∣∣agree−(u, ℓ′, (Hi,1, . . . ,Hi,k))− αiagree−(u, ℓ′, (Si,1, . . . , Si,k))
∣∣

+
∣∣agree+(u, ℓ, (Hi,1, . . . ,Hi,k))− αiagree+(u, ℓ, (Si,1, . . . , Si,k))

∣∣
+

∣∣agree−(u, ℓ, (Hi,1, . . . ,Hi,k))− αiagree−(u, ℓ, (Si,1, . . . , Si,k))
∣∣

+ αiagree+(u, ℓ′, (Si,1, . . . , Si,k)) + αiagree−(u, ℓ′, (Si,1, . . . , Si,k))

− αiagree+(u, ℓ, (Si,1, . . . , Si,k))− αiagree−(u, ℓ, (Si,1, . . . , Si,k))

≤ 4 · ε

32
|V \ Vi|+ 0

≤ ε

8
n.

Thus we get that for all vertices in Vi satisfying Equation (2) we get that their total difference is at
most ε

8n |Vi| = ε2n2

32 .

Furthermore, as there are at most ε
8 |Vi| vertices that do not satisfy Equation (2), they can contribute

at most ε
8 |Vi|n = ε2n2

32 edges that are in disagreement. The number of disagreements within Vi is at
most |Vi|2 = ε2n2

16 .

In total, we get that we have introduced ε2n2

8 new disagreements due to our approximations in the
i’th iteration. The lemma now follows by induction.

Proof of Theorem B.1. The approximation ratio follows from the previous lemma. The running time
follows from the fact that there are ks = kO(1/ε2 log(k/(εδ))) choices to assign the s vertices in each
Si to the k intervals and we have to consider the combinations of these assignments for m = O(1/ε)

sets. Thus, the outer loop iterates over kms = kO(1/ε3 log(k/(εδ))) assignments. Furthermore, each
loop iteration can be implemented in time O(ns).

C Additional Experiment Details and Results

C.1 Experiment setup

Hardware. All our algorithms are implemented in the Rust programming language. The experiments
were run on a system with two AMD EPYC 9124 CPUs, 500 GB of RAM, and an NVIDIA RTX
4000 Ada Generation GPU.

Dataset preprocessing. As a preprocessing step, we convert all networks into simple undirected
graphs by removing loops and multiple edges. When removing multiple edges between two vertices,
we replace them with a single undirected edge whose weight is the sum of the original edges. Finally,
we apply a thresholding function where positive edges are assigned weight 1, and negative edges are
assigned weight −1. An overview of all our datasets is shown in Table 2.

C.2 Parameters and implementation details for VENUS and GAIA

The pseudocode of GAIA is shown in Algorithm 1. The algorithm uses a greedy approach and employs
randomness when partially destroying and reconstructing solutions to improve the overall objective.

21

Table 2: Summary of our datasets.
Dataset |V | |E|

∣∣E+
∣∣ ∣∣E−∣∣

BitcoinOTC 5 881 21 434 18 281 3 153
Chess 7 301 32 650 19 046 13 604
WikiElec 7 115 100 355 78 440 21 915
Bundestag 1 480 397 497 320 956 76 541
Slashdot 82 140 498 532 380 933 117 599
Epinions 131 580 708 507 589 888 118 619
WikiSigned 138 587 712 337 628 000 84 337
WikiConflict 116 836 2 014 053 762 999 1 251 054

Batch size. After one initial assignment performed over the full vertex set, V is partitioned into
sets of size n

m . Sequentially, each of these m subsets is unassigned and reassigned greedily. In
the presented results, we generally use m = 10 for the sake of consistency. Depending on the
specific dataset, higher or lower values might be advantageous. Lower numbers result in more
aggressive reassignments and higher numbers in smaller, more incremental changes. For example,
for BitcoinOTC, we observed that solutions with m = 100 on average achieve 1% better objective
than with m = 10.

Breaking ties and randomization. An essential aspect of the implementation is randomised tie
breaking for both the order of vertex assignment and the selection of the assigned cluster. Without
the extensive use of randomization, the solution quality suffers greatly, and GAIA can get stuck in
bad local optima early. The same can be said for the ordering of the reassignment: if vertices are
reassigned in the same order in every iteration, the performance of the algorithms is substantially
reduced. In our implementation, vertices are greedily assigned during the first epoch, and in each
subsequent epoch, they are randomly partitioned into batches.

Vertex priority. In each batch of vertices, we select the assignment order based on the maximal
potential agreement of the vertex. In our preliminary experiments performed during the algorithm
development, this strategy was more effective than using a randomized order or using different
characteristics like the vertex degree for ordering. However, the performance does not differ greatly,
so other methods of selecting vertex ordering might be considered in the future.

Timeout and early stopping. In the presented results, both GAIA and VENUS terminate either after 30
minutes by timeout, or until the best found solution could not be improved for 50 consecutive epochs.
The condition for early stopping is intentionally chosen in a very conservative manner, as often the
algorithms will find very marginal improvements to their solutions late in the optimization process.
To reduce runtime, using, e.g., a time limit of 3 minutes instead of 30 massively reduces solving time
while only causing a significant decrease in objective value for the Epinions and WikiConflict dataset,
with an average relative difference of 1% and 10% respectively.

Simulated annealing for VENUS. With the implementation of GAIA, even with the added randomness,
a high variance in the solution quality can be observed. This, paired with the fast convergence
time, motivated a second approach with simulated annealing: VENUS. For VENUS, every part of the
algorithm remains unchanged, besides the assignment process in Algorithm 1 of Algorithm 1. We
replace the deterministic argmax with a temperature-scaled softmax over the agreement, where we
define softmax over some function f as

softmaxℓ=1...kf(ℓ) =
exp(f(ℓ))∑

ℓ′=1...k exp(f(ℓ
′))

. (3)

For our setting, we use the agreement scaled by a temperature parameter t to control the level of
randomness, with higher levels of t yielding close to uniformly random distributions, and small values
of t resulting in increasingly greedy solutions. In all our experiments, we use an initial temperature
of t0 = 100, and use an exponential decay schedule where after every τ = 5 epochs we let t← t · α,
where α = 2

3 .

Interval structure. In all experimental results presented in the main text, we use 8-Chains as the
interval structure for both GAIA and VENUS. As seen in Figures 3b and 6 and Table 3, using larger and
thus more expressive chain-like structures did not substantially improve the objective value. For some

22

Table 3: Comparison of GAIA and VENUS for BEST INTERVAL APPROXIMATION across
4/8/12/16-Chain. For each chain length, we report the best (lowest) and average disagreement.
Across all datasets, improvement above 8-Chains is minimal, with WikiConflict being the only
dataset with more than 1% improvement.

Dataset Algorithm 4-Chain 8-Chain 12-Chain 16-Chain

Best Avg Best Avg Best Avg Best Avg

BitcoinOTC
GAIA 768 824 711 767 721 766 725 769
VENUS 819 839 760 783 750 787 716 781

Chess
GAIA 7 279 7 361 6 472 6 573 6 469 6 590 6 467 6 620
VENUS 7 276 7 334 6 410 6 486 6 426 6 505 6 398 6 516

WikiElec
GAIA 11 937 12 159 11 275 11 459 11 265 11 403 11 300 11 474
VENUS 11 923 11 943 11 297 11 420 11 302 11 404 11 255 11 390

Bundestag
GAIA 3 772 3 903 1 001 9 054 1 030 10 256 2 584 10 845
VENUS 3 819 4 324 1 001 2 078 1 002 10 862 11 704 11 722

Slashdot
GAIA 51 367 53 042 45 120 46 218 44 860 46 180 44 827 45 910
VENUS 51 117 51 813 44 563 44 884 44 447 44 767 44 462 44 707

Epinions
GAIA 34 213 34 628 31 687 32 789 31 959 33 125 31 805 32 755
VENUS 34 112 34 200 31 286 33 258 31 287 32 849 31 445 34 438

WikiSigned
GAIA 38 513 39 313 35 204 36 270 35 003 36 225 35 008 36 269
VENUS 38 083 38 343 34 564 34 971 34 819 35 230 35 062 35 390

WikiConflict
GAIA 140 004 142 435 69 344 69 847 68 094 68 445 67 761 68 111
VENUS 142 450 143 269 69 014 69 264 67 645 67 953 67 472 67 717

datasets, like Bundestag or Epinions, performance even starts to decrease with more intervals. Hence,
we report the results on an 8-Chain for consistency and to strike a balance between interpretability,
expressivity, and effectiveness of our heuristic.

Slashdot WikiConflict WikiElec WikiSigned

Bitcoin Bundestag Chess Epinions

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
31.0k

33.0k

35.0k

37.0k

36.0k

38.0k

40.0k

6.6k

6.9k

7.2k

7.5k

11.5k

12.0k

12.5k

3.0k

6.0k

9.0k

12.0k

80.0k

100.0k

120.0k

140.0k

160.0k

0.7k

0.8k

0.9k

1.0k

44.0k

48.0k

52.0k

56.0k

Number of Intervals

D
is

ag
re

em
en

t

Algorithm GAIA VENUS

Figure 6: Final objective for different interval structures for all datasets.

23

Table 4: Comparison of GAIA and VENUS for solving BEST INTERVAL APPROXIMATION. We
report the minimum disagreement (in absolute number of edges), as well as averages and standard
deviations over 50 runs. The solutions were computed for a fixed 8-Chain interval structure and 10
reassignment batches.

Gaia Venus

Dataset Best Avg±Std Best Avg±Std

BitcoinOTC 711 767±26 760 783±11
Chess 6 472 6 573±52 6 410 6 486±36
WikiElec 11 275 11 459±143 11 297 11 420±75
Bundestag 1 001 9 054±4 357 1 001 2 078±3 244
Slashdot 45 120 46 218±860 44 563 44 884±473
Epinions 31 687 32 789±1 300 31 286 33 258±1 306
WikiSigned 35 204 36 270±509 34 564 34 971±165
WikiConflict 69 344 69 847±193 69 014 69 264±141

Table 5: Comparison of our algorithms and CORRELATION CLUSTERING baselines for solving
CORRELATION CLUSTERING. Reported is the percentage of edges violated in the solution (lower
is better). Our algorithms use a fixed structure of 8 distinct clusters, while the CORRELATION
CLUSTERING algorithms are not restricted in the number of clusters.

Our algorithms CORRELATION CLUSTERING baselines

Dataset GAIA VENUS GAEC GAECKLj SCMLEvo RAMA

BitcoinOTC 5.57 5.57 5.58 5.57 5.57 5.64
Chess 27.67 27.75 28.64 28.10 27.33 39.98
WikiElec 14.13 14.13 14.13 14.13 14.13 14.45
Bundestag 2.95 2.95 3.06 2.95 2.95 3.72
Slashdot 13.70 13.59 13.75 13.66 13.52 17.17
Epinions 6.69 6.71 6.83 6.68 6.67 6.86
WikiSigned 6.30 6.21 6.17 6.17 6.17 6.96
WikiConflict 5.85 5.85 5.87 5.82 5.82 6.02

C.3 Choosing interval structures

We always choose the interval structure for the algorithm statically. While we can adapt partial
assignments to changed interval structures, preliminary experiments indicate that pruning unused
intervals does not provide an effective heuristic. Rather, we would suggest using approaches from
hyperparameter search to choose interval structures. With only very limited runtime, GAIA and VENUS
can find good solutions. Methods like successive halving [31] can be used to exploit this efficiency
and start with a large population of candidate structures, which is quickly reduced to only invest
compute into structures with good objective scores.

C.4 Impact of simulated annealing on solution quality

Next, we study how much the simulated annealing used in VENUS impacts its results compared to
GAIA. Our detailed results on the real-world datasets are shown in Table 4. For almost all datasets,
the average objective function of solutions found by VENUS is better than those found by GAIA.
This demonstrates how simulated annealing can avoid local minima and continue the optimization
process toward better solutions. Additionally, VENUS generally exhibits smaller standard deviations,
indicating more consistency in the approach. A clear outlier to this is the Epinions dataset, where the
trend reverses and the purely greedy approach performs better; we tried to understand the reason for
this behavior, but could not find a clear indicator.

24

Table 6: Comparison of the results of GAIA and VENUS when solving CORRELATION CLUSTERING.
We report the minimum disagreement (in absolute number of edges), as well as averages and standard
deviations over 50 runs. The solutions were computed for 8 distinct clusters (i.e., 8 non-overlapping
intervals) and 10 reassignment batches.

Gaia Venus

Dataset Best Avg±Std Best Avg±Std

BitcoinOTC 1 194 1 201±3 1 194 1 200±4
Chess 9 035 9 128±55 9 061 9 132±72
WikiElec 14 181 14 185±2 14 182 14 185±2
Bundestag 11 736 11 756±27 11 725 11 736±9
Slashdot 68 276 68 351±30 67 759 68 334±88
Epinions 47 412 47 499±36 47 570 48 750±434
WikiSigned 44 881 44 992±148 44 217 44 274±23
WikiConflict 117 814 117 882±23 117 885 117 932±26

C.5 Benchmarking against CORRELATION CLUSTERING baselines

In addition to using GAIA and VENUS to find interval assignments with partially overlapping structures,
we also evaluate their performance on structures where intervals are non-overlapping (pairwise
disjoint). As described in Section 2, this setup corresponds to the CORRELATION CLUSTERING
problem with a fixed number of clusters. Results for a structure with 8 disjoint intervals are shown in
Tables 5 and 6. Across all datasets, GAIA and VENUS achieve objective values within 0.5 percentage
points of the best CORRELATION CLUSTERING baselines, despite being constrained to only 8 clusters.
Moreover, the solutions produced by GAIA and VENUS show low variance, with a standard deviation of
under 100 violations on all but one dataset. This indicates that the algorithms consistently found strong
solutions, particularly with less variance than when using overlapping interval structures (see Table 4).

We believe that this finding is highly interesting, since it shows that our methods can find CORRELA-
TION CLUSTERING solutions that are on par with state-of-the-art algorithms, while also being able to
solve our more general BEST INTERVAL APPROXIMATION problem.

Additionally, it is notable that we find competitive solutions even though we only use 8 clusters,
whereas the baselines might use an unrestricted number. However, this finding is not completely new
and echoes findings by Brusco and Doreian [9], who observed similar objective values using few
clusters on the WikiElec and Slashdot datasets.

C.6 Scalability and runtime analysis

The time until convergence for GAIA and VENUS is shown in Table 7 and Figure 7. For both algorithms,
the running time scales roughly linearly with the size of the graph and the memory usage is at most
260 megabytes for the largest datasets. Despite the artificial slowdown of convergence during early
epochs, VENUS is remarkably not notably slower to converge than GAIA. Further, we note that both
the memory and runtime complexity of our algorithms depend linearly on the number of intervals, so
the running time can vary with the size of the interval structure.

C.7 Case study

The Bundestag dataset. Our novel Bundestag dataset was constructed by scraping all the roll-call
voting data from the German parliament between October 18th, 2012, and March 18th, 2025.3 As
official works, this voting data is not subject to copyright. From the voting data, we then generated
a signed graph by representing each member with a vertex and assigning a positive edge if two
members vote the same way in at least 75% of sessions they both attended, and a negative edge if
their votes aligned in 25% of sessions or less. This left two politicians without any edges, which
were thus excluded from the signed graph. Notably, the voting data includes several politicians who
changed parties during their parliamentary careers. In such cases, we treat the politicians as members

3This data is publicly available at https://www.bundestag.de/parlament/plenum/abstimmung/liste

25

https://www.bundestag.de/parlament/plenum/abstimmung/liste

Table 7: Time until convergence averaged over 50 runs on different instances. We report the runtime
in seconds until 50 full epochs without improvement (lower is better). Our algorithms use a fixed
8-Chain interval structure and 10 batches for vertex reassignment.

GAIA VENUS

Dataset Best Avg±Std Worst Best Avg±Std Worst

BitcoinOTC 1.2 2.5±0.9 5.7 1.8 3.2±0.8 6.2
Chess 3.7 8.4±2.4 15.2 3.8 8.5±2.1 13.4
WikiElec 6.1 16.2±5.5 31.1 7.1 15.9±6.2 41.5
Bundestag 5.5 8.8±1.9 16.2 10.9 15.2±2.4 22.8
Slashdot 107.5 251.9±114.8 781.2 98.9 173.8±45.3 348.5
Epinions 182.3 369.1±129.4 954.8 196.0 390.8±143.0 897.4
WikiSigned 169.6 353.5±94.3 602.9 214.6 357.5±90.6 585.3
WikiConflict 436.2 874.0±192.8 1 470.0 372.9 695.1±183.7 1 220.0

0s

400s

800s

0k 500k 1 000k 1 500k 2 000k

Number of Edges

R
u

n
tim

e

GAIA VENUS Bitcoin

Bundestag

Chess

WikiElec

Epinionst

Slashdots

WikiConflict

WikiSigned

Figure 7: Time until convergence per instance, see Table 7 for details.

of the party they were first affiliated with for visualization purposes. This could also explain slight
within-party differences, e.g., the LINKE party split between 2023 and 2024.

Generation of Figure 1. With the preprocessed Bundestag instance, we let VENUS compute a solution
and for each politician we visualize their party membership via coloring the corresponding point and
the positioning it on the y-axis. The interval assignment produced by VENUS determines the x-position.
We then slightly adjust the position inside the bins to indicate the affinity of each politician as follows:
For the vertex v ∈ Cℓ corresponding to the politician, we define its affinity to other clusters Cℓ′ as

affinity(v, Cℓ′) =
∣∣N+(v) ∩ Cℓ′

∣∣− ∣∣N−(v) ∩ Cℓ′
∣∣ . (4)

Then we calculate the x-perturbation of v, denoted by vx, as

vx = tanh

∑
ℓ′ ̸=ℓ

affinity(v, Cℓ′)

(ℓ′ − ℓ)(|N+(v)|+ |N−(v)|)

 . (5)

In words, the position of a vertex is shifted to the left or to the right according to the assignment of its
neighbors, depending on their distance. Neighbors assigned to closer intervals affect the position
more, and neighbors assigned further away affect the position less. The direction of this influence
depends on the edge sign.

This function simply serves the purpose of visualization, to show connectivity across intervals. It is
not a direct output of our algorithm and does not have a fixed interpretation. Finally, we slightly adjust
the position of the vertices in the plot with small amounts of Gaussian noise to avoid over-plotting.
The figure also includes a violin plot of each political party.

26

0

250

500

750

1000

1 2 3 4 5 6 7 8

Interval Index

N
u

m
b

e
r

o
f

A
ss

ig
n

e
d

 M
e

m
b

e
rs

LINKE (Left) GRÜNE (Green) SPD (Social Democrat)

FDP (Liberal) CDU/CSU (Conservative) AfD (Far Right)

Figure 8: An alternative visualization of VENUS’s results on the Bundestag dataset. Here, we present
party affiliations of Bundestag members assigned to each interval.

Results. The solution found by VENUS is highly interpretable and can be used to generate insight
about the co-voting behavior in the German parliament. This interpretation is discussed in Section 4,
with an alternative visualisation in Figure 8, which shows an interval-centric view instead of the
party-centric view in Figure 1. Figure 8 shows that each interval is dominated by members of one
political party. Further, as discussed previously, the figure accurately reflects the political spectrum in
Germany, with the exception of the FDP, which appears “split” between intervals 4–6. This can be
justified by the different coalition structures in the last few legislative periods, as we discussed in the
main text.

27

	1 Introduction
	2 Problem Definition and Theoretical Results
	2.1 Computational hardness
	2.2 A PTAS for fixed k in complete graphs

	3 Heuristic Algorithms
	4 Experiments
	5 Conclusion
	A Hardness Result
	A.1 Construction
	A.2 Structural lemmas
	A.3 Proof of Theorem 2.2

	B A PTAS for a Fixed Number of Intervals
	C Additional Experiment Details and Results
	C.1 Experiment setup
	C.2 Parameters and implementation details for VENUS and GAIA
	C.3 Choosing interval structures
	C.4 Impact of simulated annealing on solution quality
	C.5 Benchmarking against Correlation Clustering baselines
	C.6 Scalability and runtime analysis
	C.7 Case study

