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Markov Logic Networks

A Markov Logic Network   . induces a 
probability distribution over        :
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In most cases, the observed data is substructure of a larger structure.

Our goal is to estimate parameters for the distribution              for some (potentialy large)     :
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In most cases, the observed data is substructure of a larger structure.

Our goal is to estimate parameters for the distribution              for some (potentialy large)     :

However, most MLNs are not projective1,2 and hence for most MLNs:

Learning Across Domain Sizes
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2. Jaeger, M., Schulte, O.: A complete characterization of projectivity for statistical relational models. In: Bessiere, C. (ed.) 
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Problems:
● may be very large
● may be unknown

This makes it (computationally) prohibitive to make the ML estimate for                        .

Hence, our goal will be to analyze the relation between the distributions         and              

and use this analysis to get better ML estimates for                       .

Problem Statement

10



The age old wisdom is true here as well …

Main Result
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The age old wisdom is true here as well …

Main Result

Regularization* Leads to 
Better Generalization

i.e.,          approches                         with regularization. 
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Weight Decomposition

Let us define the weight and the 𝒌-weights of a world:

We can then decompose the weight of an 𝑛+𝑚-world into contributions from the observed 
substructure, the unobserved structure, and the connections between these two structures:

Reminder - MLN probability distribution:
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Weight Decomposition - Example
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Bounding the Weight

For 𝑘 = 1:
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Two Notions of Generalization

Using these bounds, we can deduce two natural notions of generalization across domain sizes:

1. Increasing marginal likelihood:

2. Decreasing KL divergence:
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Reducing Parameter Variance

● L1 and L2 regularization

● Domain-Size Aware Markov Logic Networks (DAMLN)3

● Adaptation of regular MLNs

● Downscale formula weights depending on target domain size

3. Mittal, H., Bhardwaj, A., Gogate, V., Singla, P.: Domain-size aware markov logic networks. In: Chaudhuri, K., Sugiyama, 
M. (eds.) Proc. AISTATS 2019. Proceedings of Machine Learning Research, vol. 89, pp. 3216–3224. PMLR (2019) 18



Experimental Results
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Conclusion

Relational data does not admit consistency of parameter estimation.

We can bound this inconsistency in terms of the parameter variance.

Decreasing parameter variance allows for better generalization.

Future Work

The bounds are met for the uniform distribution.

However, they can be loose even for some projective distributions.

This indicates that maybe better bounds can be obtained.
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