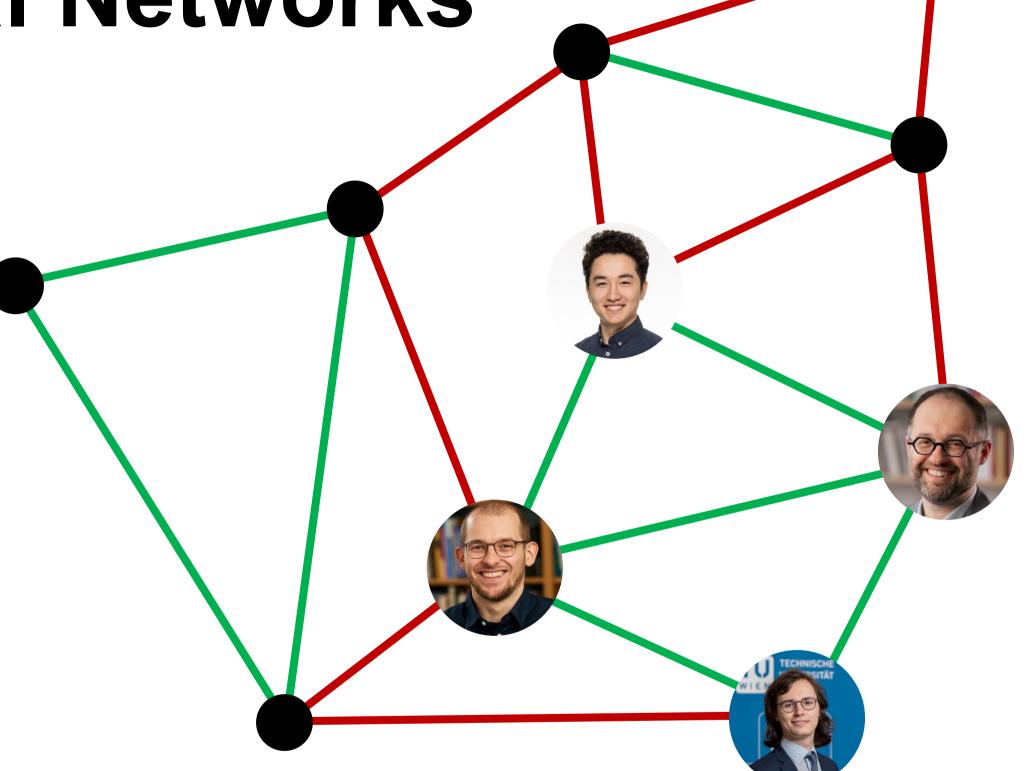
Discovering Opinion Intervals from Conflicts in Signed Graphs

Peter Blohm*, Florian Chen*, Aristides Gionis, Stefan Neumann

San Diego Sightseeing Preferences

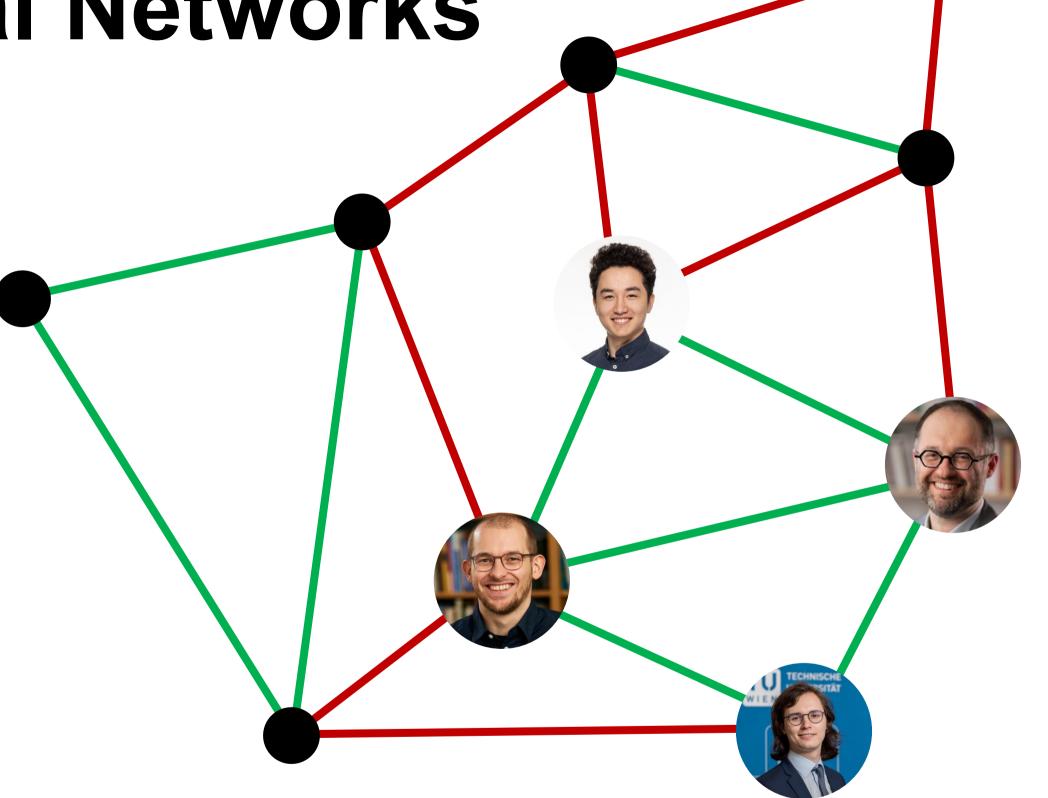
 We observe a social network modelled as a signed graph



San Diego Sightseeing Preferences

 We observe a social network modelled as a signed graph

- Each edge has a sign + or for
 - Positive + interactions or
 - Negative interactions

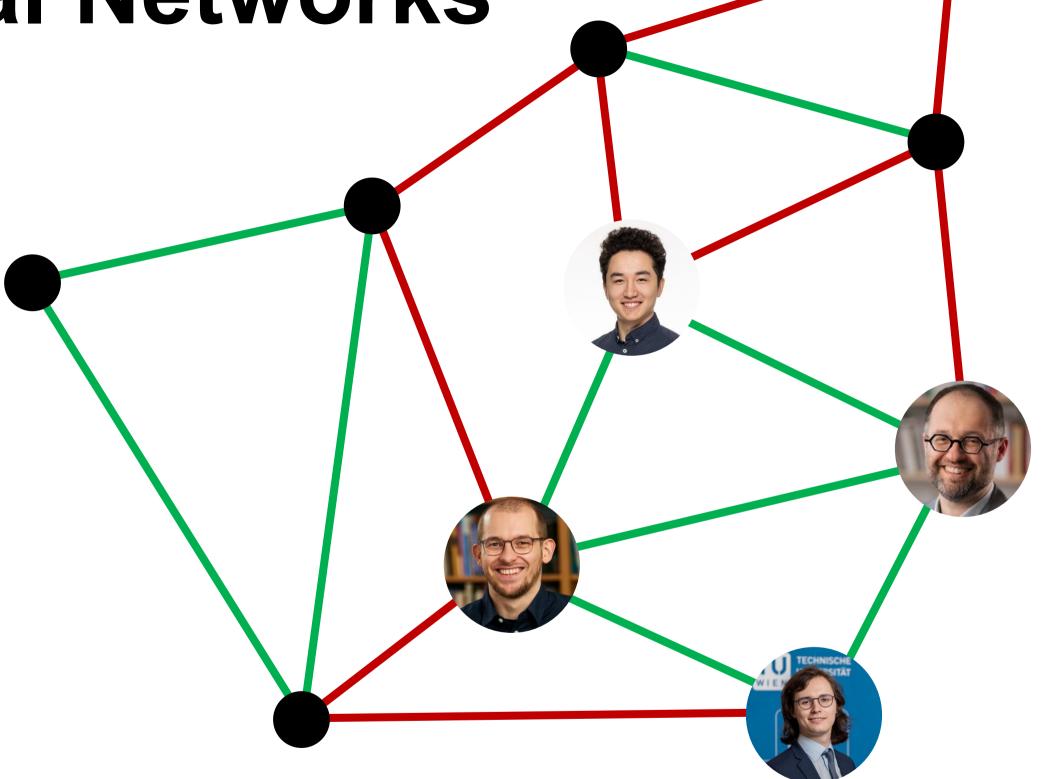


San Diego Sightseeing Preferences

 We observe a social network modelled as a signed graph

- Each edge has a sign + or for
 - Positive + interactions or
 - Negative interactions

• Goal: Discover individuals' opinions

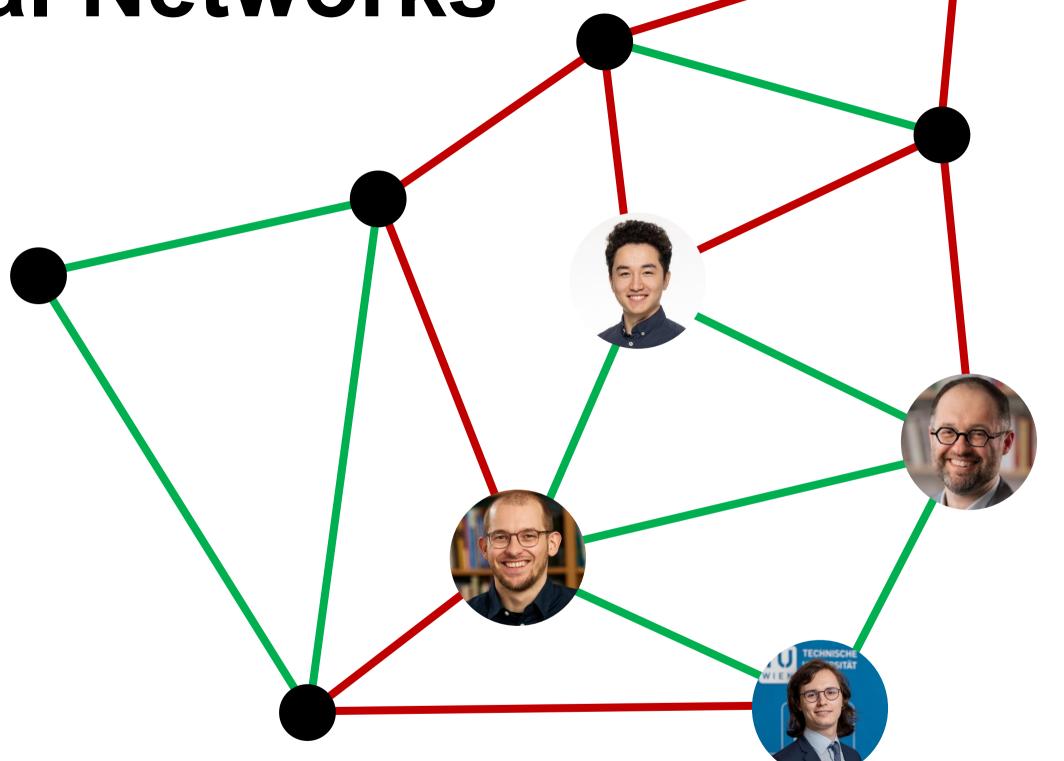


San Diego Sightseeing Preferences

CORRELATION CLUSTERING:

Assign each vertex $v \in V$ a cluster label $\ell_v \in \mathbb{N}$ to maximize the number of

- (1) $\{u, v\} \in E^+$ for which $\ell_u = \ell_v$
- (2) $\{u, v\} \in E^-$ for which $\ell_u \neq \ell_v$

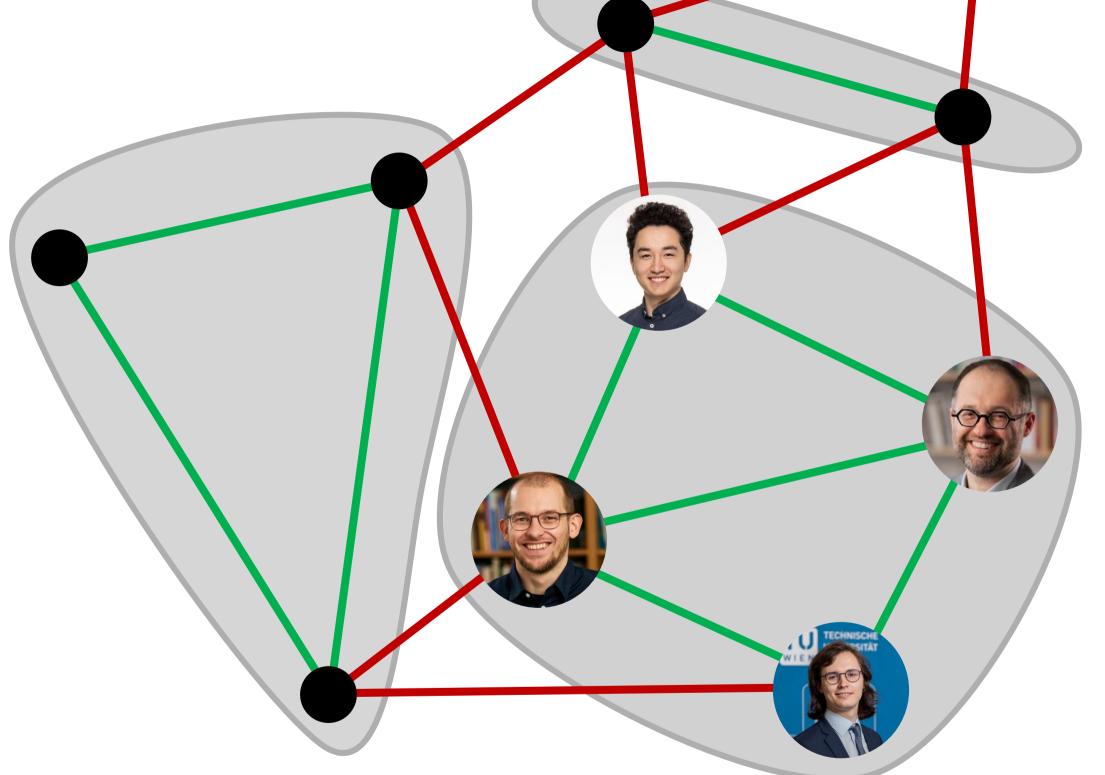


San Diego Sightseeing Preferences

CORRELATION CLUSTERING:

Assign each vertex $v \in V$ a cluster label $\ell_v \in \mathbb{N}$ to maximize the number of

- (1) $\{u, v\} \in E^+$ for which $\ell_u = \ell_v$
- (2) $\{u, v\} \in E^-$ for which $\ell_u \neq \ell_v$

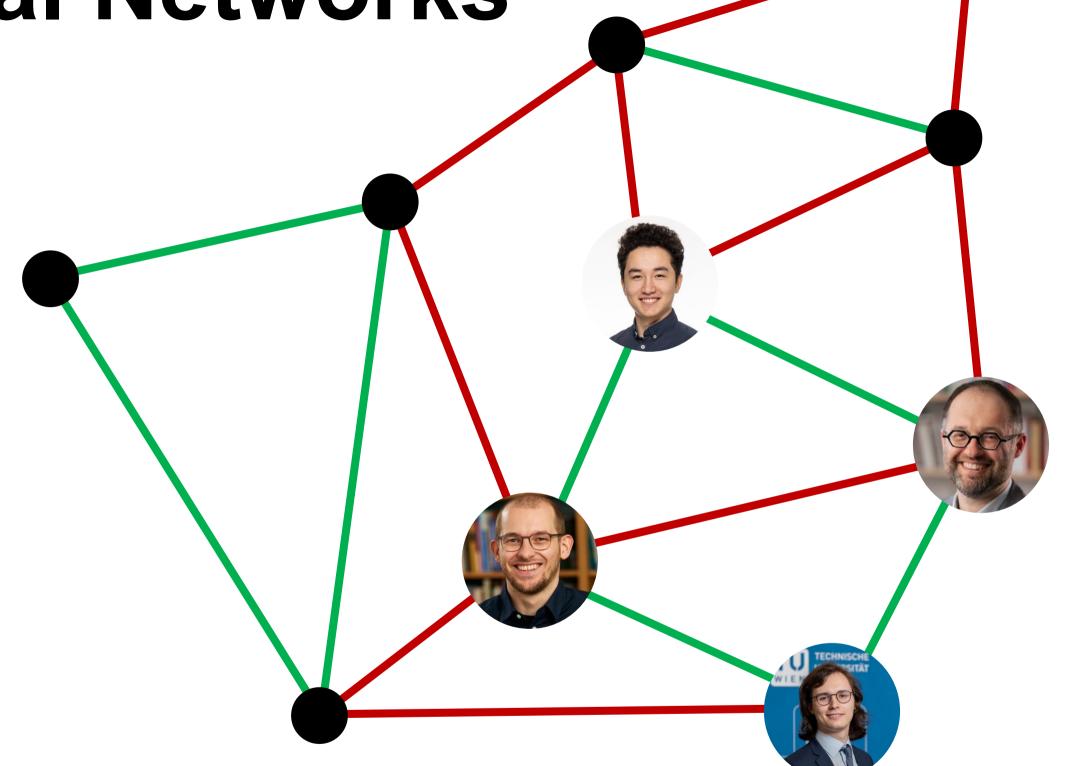


San Diego Food Preferences

CORRELATION CLUSTERING:

Assign each vertex $v \in V$ a cluster label $\ell_v \in \mathbb{N}$ to maximize the number of

- (1) $\{u, v\} \in E^+$ for which $\ell_u = \ell_v$
- (2) $\{u, v\} \in E^-$ for which $\ell_u \neq \ell_v$



San Diego Food Preferences

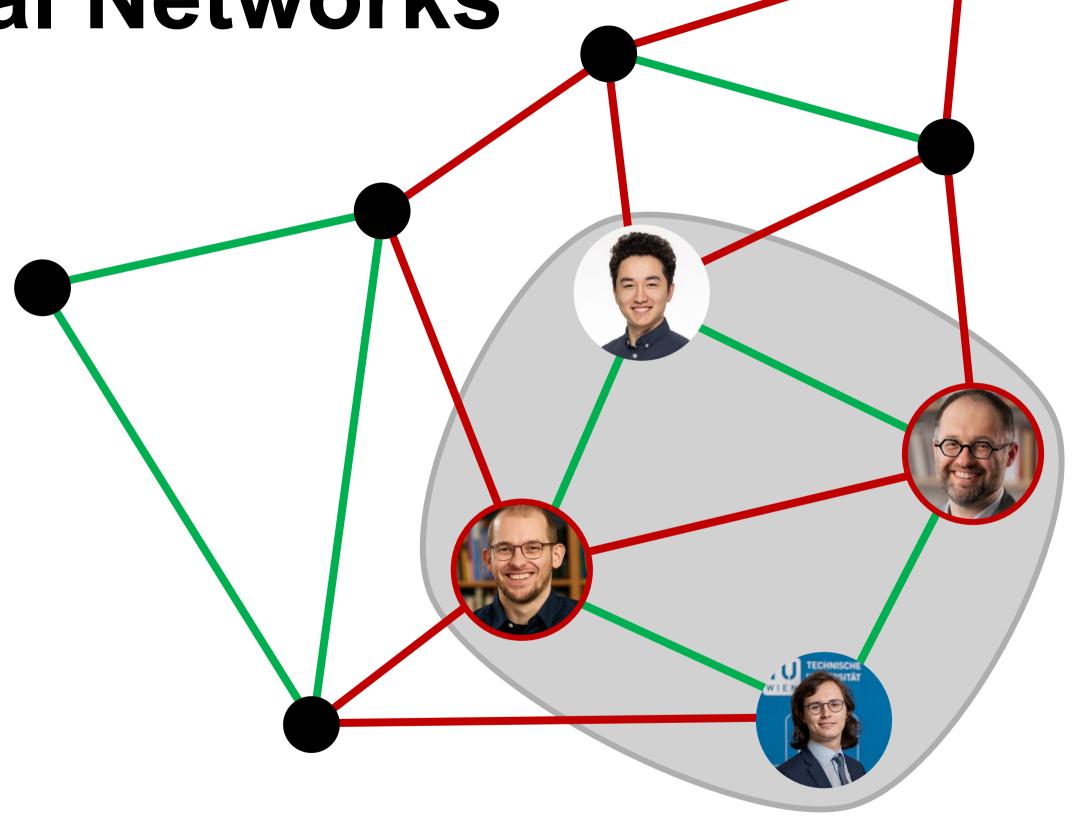
CORRELATION CLUSTERING:

Assign each vertex $v \in V$ a cluster label $\ell_v \in \mathbb{N}$ to maximize the number of

(1)
$$\{u, v\} \in E^+$$
 for which $\ell_u = \ell_v$

(2)
$$\{u, v\} \in E^-$$
 for which $\ell_u \neq \ell_v$

Problem: Disjoint clusters cannot model complex node interactions



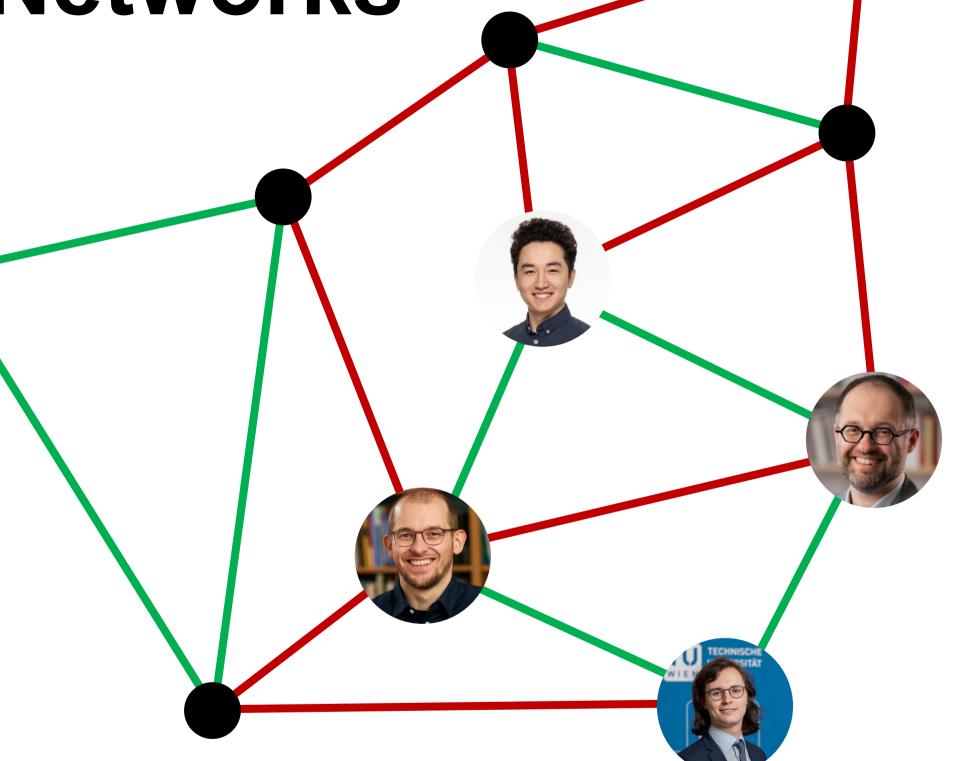
San Diego Food Preferences

BEST INTERVAL APPROXIMATION:

Assign each vertex an interval $\{I_v : v \in V\}$ with $I_v \subset \mathbb{R}$ to maximize the number of

(1) $\{u, v\} \in E^+$ for which I_u and I_v overlap

(2) $\{u, v\} \in E^-$ for which I_u and I_v are disjoint



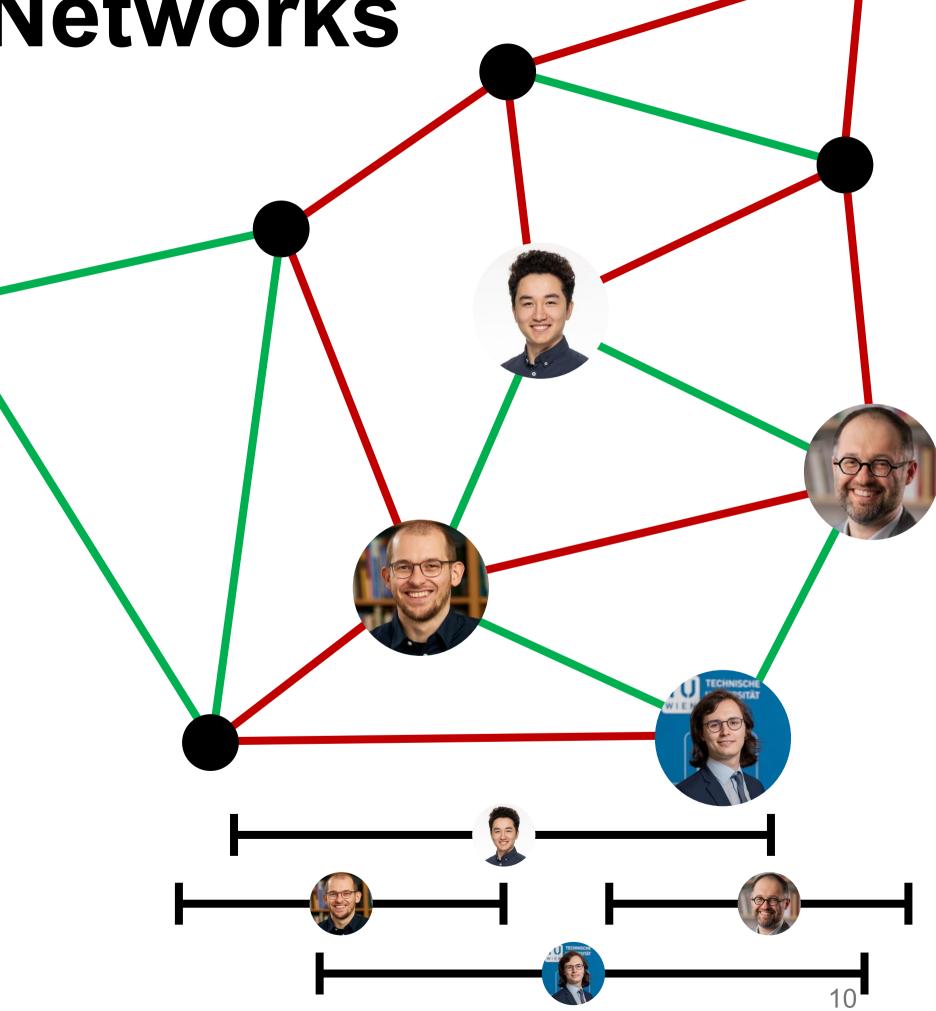
San Diego Food Preferences

BEST INTERVAL APPROXIMATION:

Assign each vertex an interval $\{I_v : v \in V\}$ with $I_v \subset \mathbb{R}$ to maximize the number of

(1) $\{u, v\} \in E^+$ for which I_u and I_v overlap

(2) $\{u, v\} \in E^-$ for which I_u and I_v are disjoint



San Diego Food Preferences

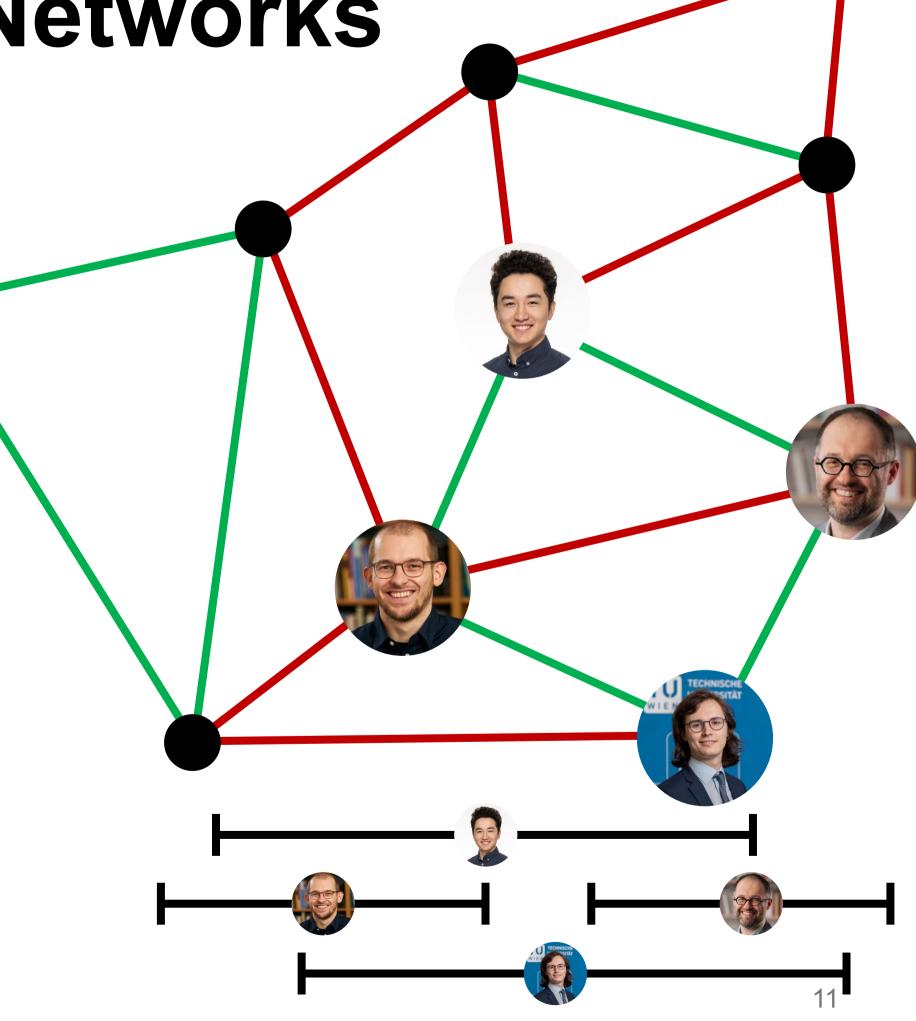
BEST INTERVAL APPROXIMATION:

Assign each vertex an interval $\{I_v : v \in V\}$ with $I_v \subset \mathbb{R}$ to maximize the number of

(1) $\{u, v\} \in E^+$ for which I_u and I_v overlap

(2) $\{u, v\} \in E^-$ for which I_u and I_v are disjoint

 This is more expressive than CORRELATION CLUSTERING



San Diego Food Preferences

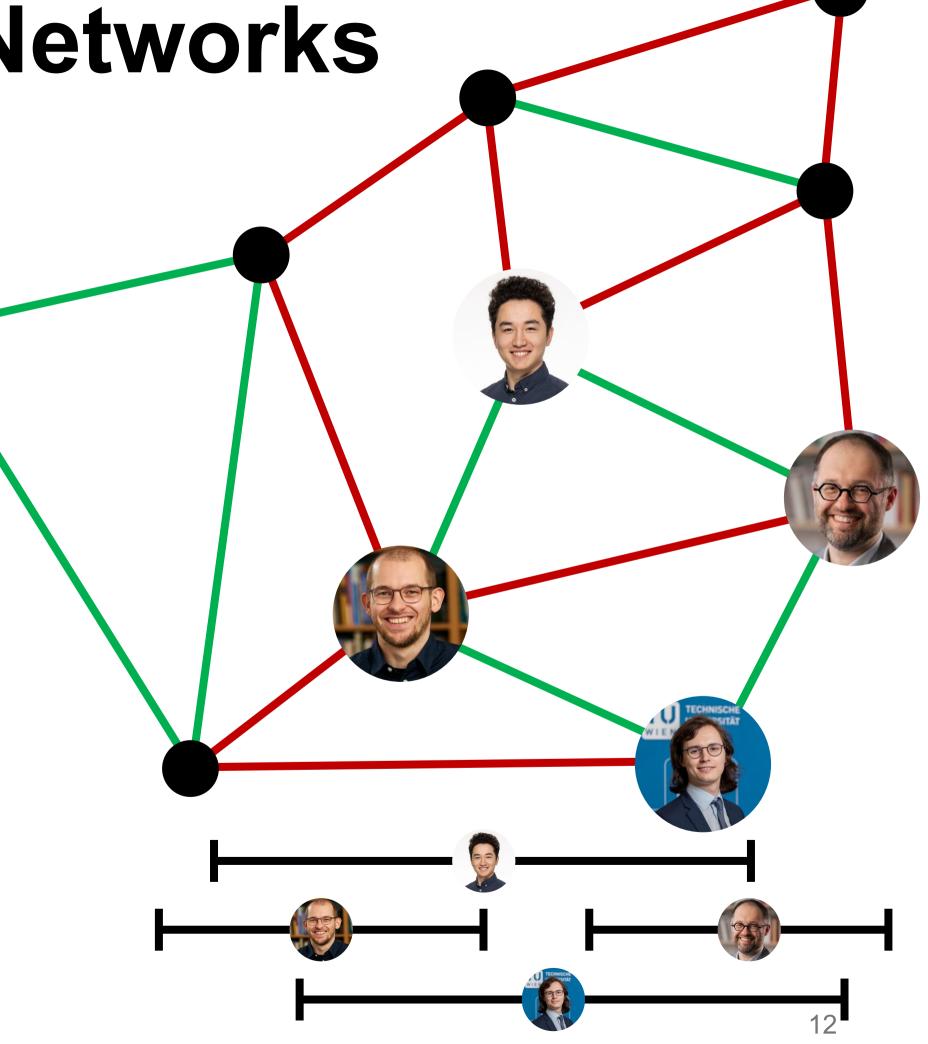
BEST INTERVAL APPROXIMATION:

Assign each vertex an interval $\{I_v : v \in V\}$ with $I_v \subset \mathbb{R}$ to maximize the number of

(1) $\{u, v\} \in E^+$ for which I_u and I_v overlap

(2) $\{u, v\} \in E^-$ for which I_u and I_v are disjoint

- This is more expressive than CORRELATION CLUSTERING
- The model captures the tolerance an individual has for other opinions



Problem Analysis

Theorem

BEST INTERVAL APPROXIMATION is NP-hard. This follows via a reduction from ACYCLIC DIGRAPH PARTITION.

Theorem

BEST INTERVAL APPROXIMATION is NP-hard. This follows via a reduction from ACYCLIC DIGRAPH PARTITION.

 One cannot get a constant factor approximation on the number of mistakes in OPT

Theorem

BEST INTERVAL APPROXIMATION is NP-hard. This follows via a reduction from ACYCLIC DIGRAPH PARTITION.

 One cannot get a constant factor approximation on the number of mistakes in OPT

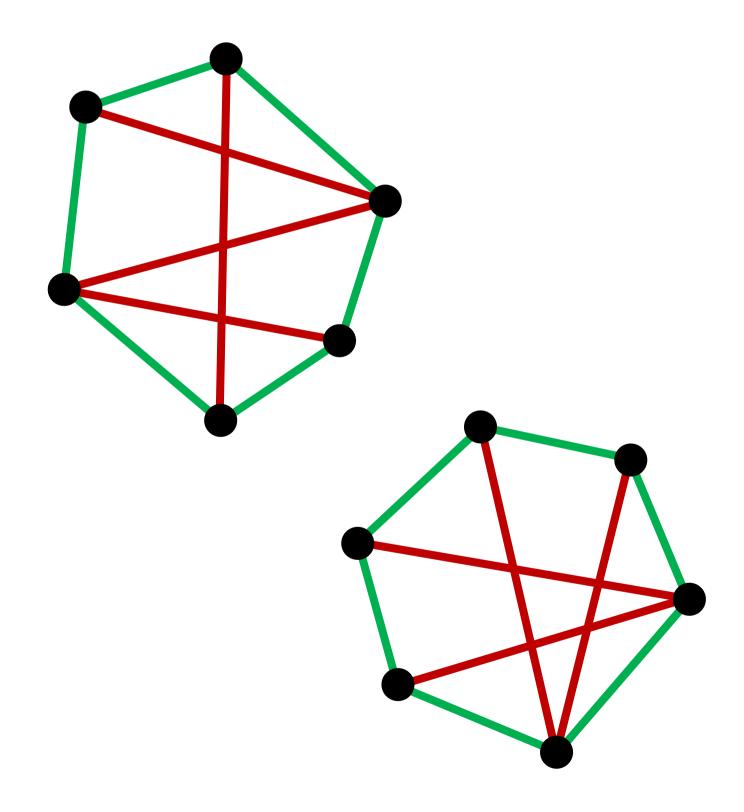
• This result holds even if $G^+ = (V, E^+)$ is a chordless cycle

Theorem

BEST INTERVAL APPROXIMATION is NP-hard. This follows via a reduction from ACYCLIC DIGRAPH PARTITION.

 One cannot get a constant factor approximation on the number of mistakes in OPT

• This result holds even if $G^+ = (V, E^+)$ is a chordless cycle

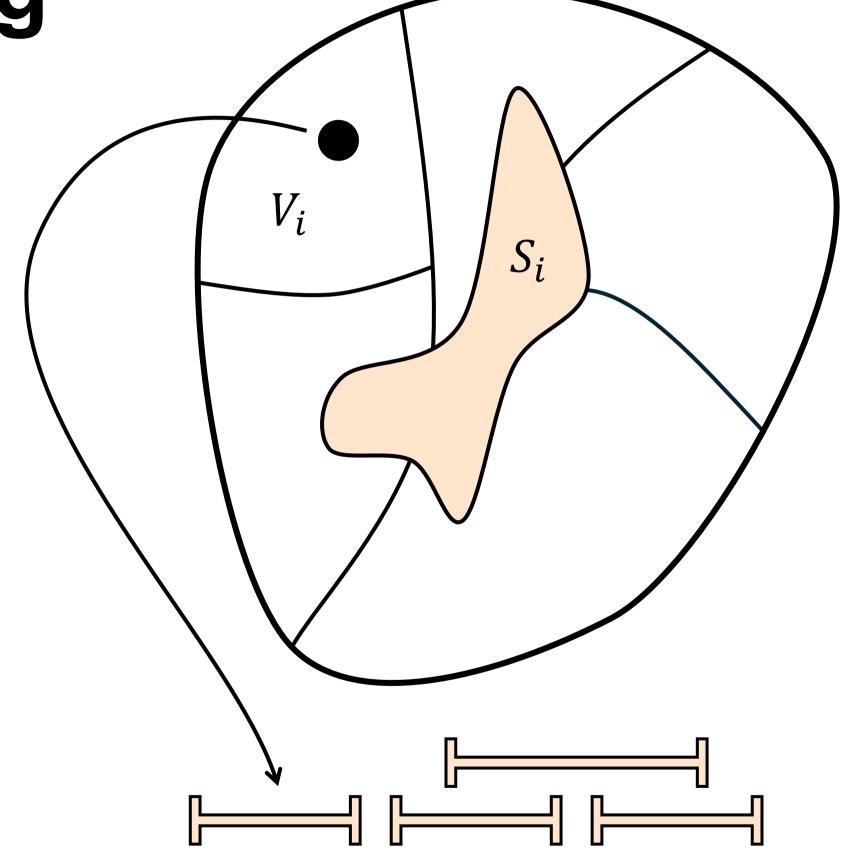


Algorithms

PTAS in restricted setting

For complete signed graphs and fixed interval configurations find a $(1 + \epsilon)$ -approximation:

- 1. Partition V into sets V_1, \dots, V_m
- 2. For each subset V_i :
 Sample S_i with replacement from $V \setminus V_i$ Solve S_i optimally
 Assign V_i greedily
- 3. Combine solutions across all V_i



PTAS in restricted setting

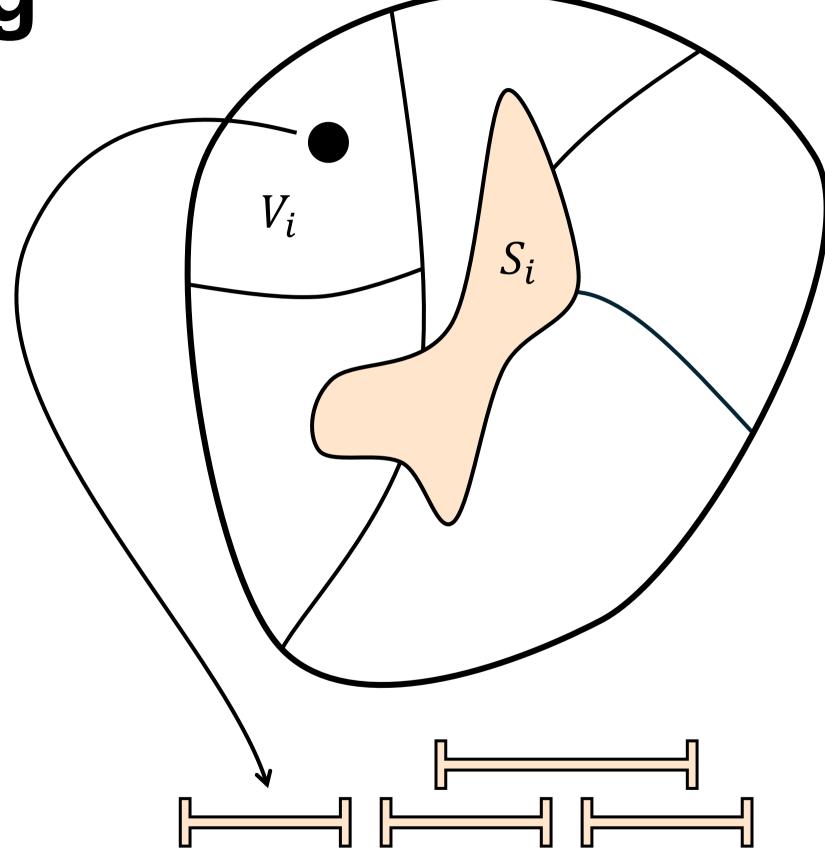
For complete signed graphs and fixed interval configurations find a $(1 + \epsilon)$ -approximation:

- 1. Partition V into sets V_1, \dots, V_m
- 2. For each subset V_i :

Sample S_i with replacement from $V \setminus V_i$ Solve S_i optimally

Assign V_i greedily

3. Combine solutions across all V_i



Heuristics in restricted setting

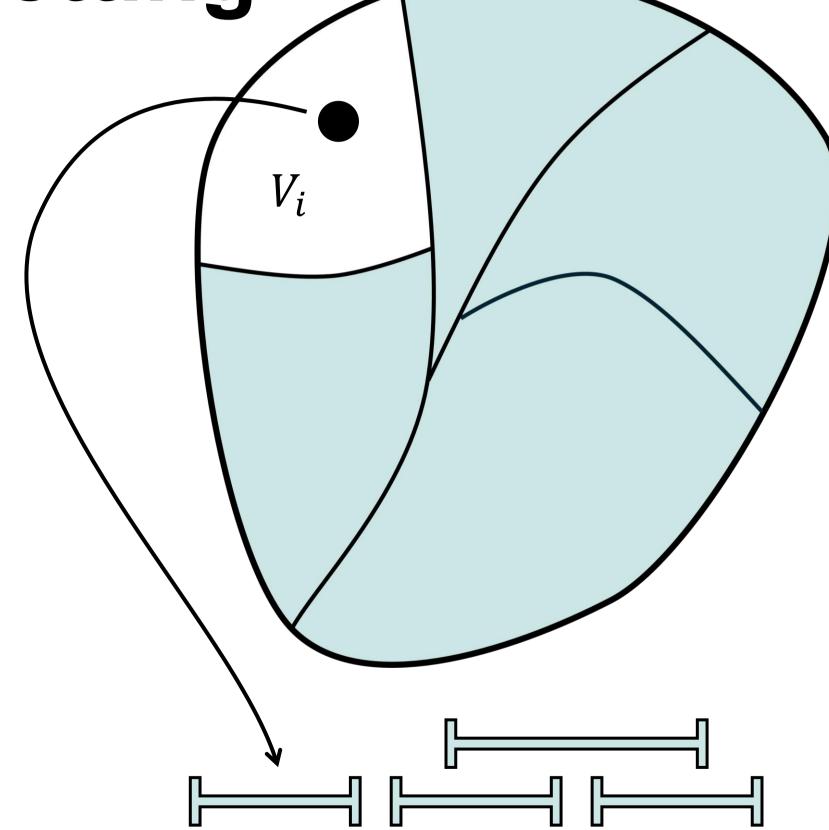
For complete signed graphs and fixed interval configurations find a heuristic solution:

- 1. Partition V into sets V_1, \dots, V_m
- 2. For each subset V_i :

Reuse solution on $V \setminus V_i$

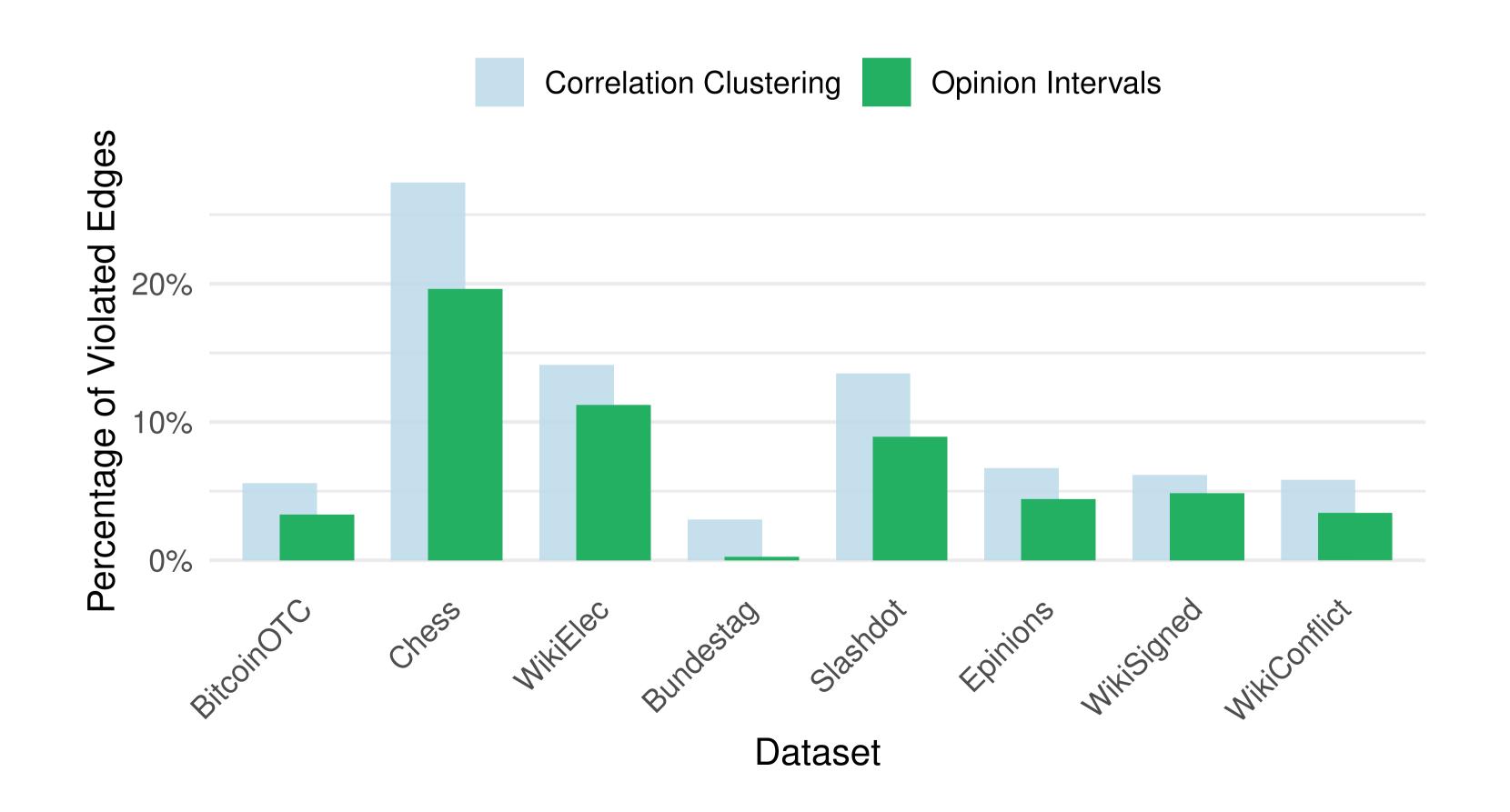
Assign V_i greedily

3. Combine solutions across all V_i

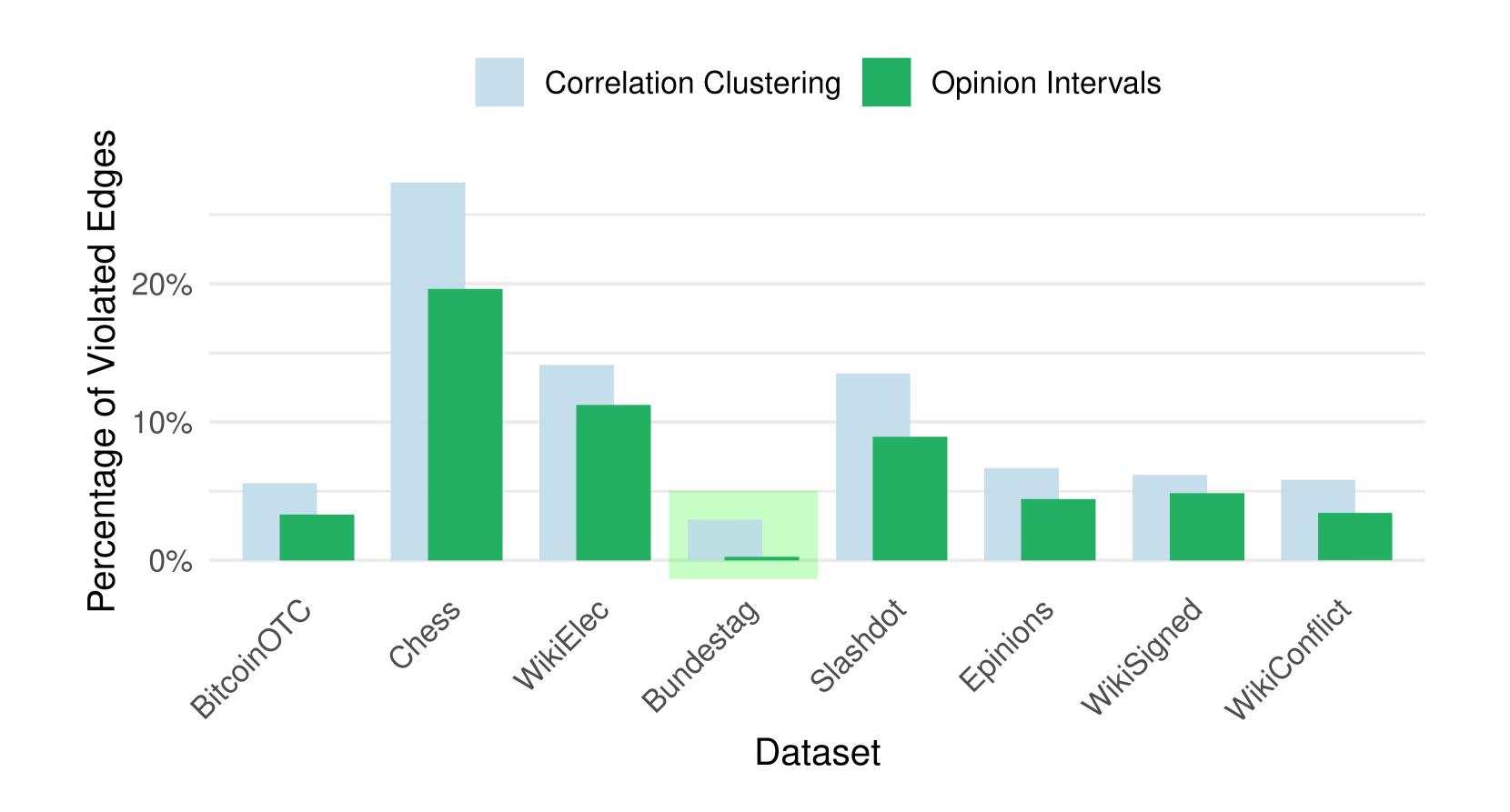


Experiments

38% fewer disagreements than Correlation Clustering



38% fewer disagreements than Correlation Clustering

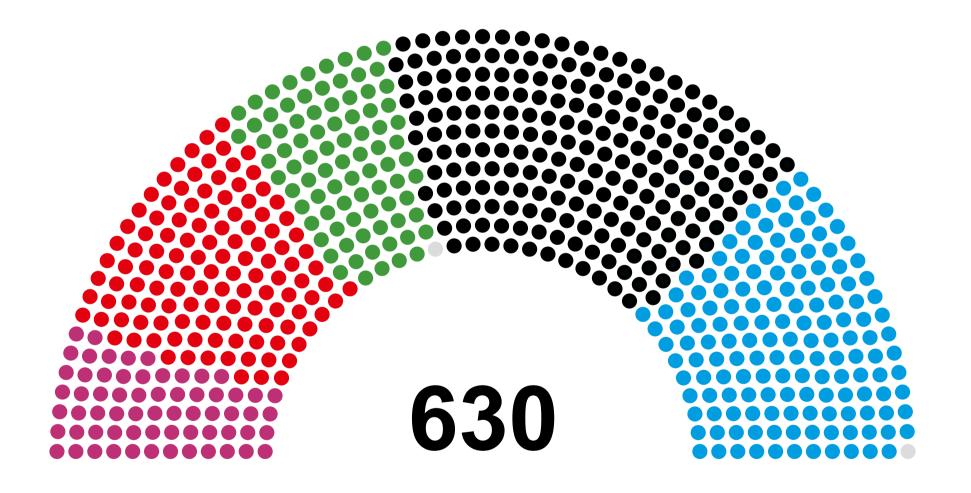


German Bundestag

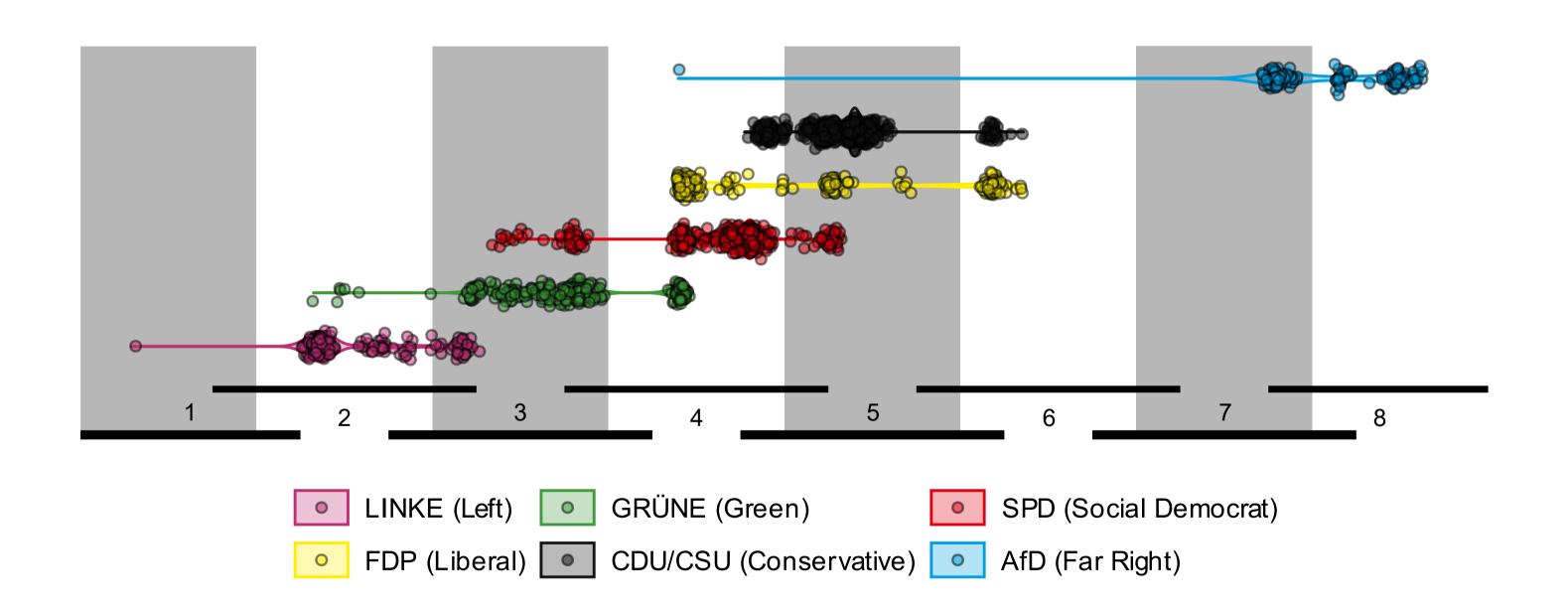
Multi-party political system

Coalitions are formed to achieve majority

 We create a signed graph based on historic co-voting behaviour



Reconstructing the German political spectrum



Conclusion

We introduced the problem **BEST INTERVAL APPROXIMATION**

We provided a PTAS for complete graphs and a fixed interval configuration

We provided scalable and effective heuristic algorithms

Open Questions

Can we find better approximation guarantees in the unrestricted setting? (>75%?)

How can we efficiently find interval structures for Best Interval Approximation?

Can this approach be extended to higher dimensions?