SCALABLE INTERACTIVE DATA VISUALIZATION

Florian Chen and Thomas Gärtner — TU Wien, Vienna, Austria

MOTIVATION

Data visualization is crucial for exploration, and interactive visualizations enable dynamic adjustments.

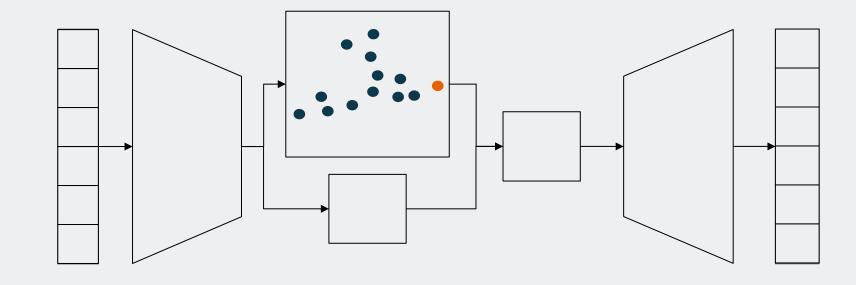
Control points offer direct interaction, allowing users to move points, affecting other points based on similarity.

Prior implementations are often slow on large datasets due to recalculations needed as a point is dragged around.

InVis: webtender (c-KPCA iterative) (on 06deac9c2ddc) – – × Eile Edit Projection Algorithm View Help

We implemented all our algorithms in an updated version of **InVis** [1]!

Iterativ

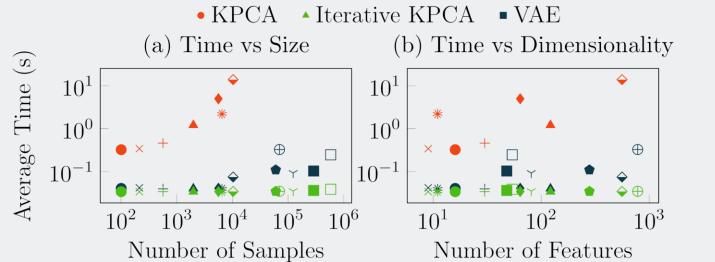

KNOWLEDGE-BASED KERNEL PCA

Knowledge-based kernel PCA [2] extends kernel PCA with constraints for user interaction. (e.g. control point) We seek functions $f_1 \dots f_d$ that maximize: $f_s^* = \underset{f \in \mathcal{H}}{\operatorname{argmax}} \quad \frac{1}{n} \sum_{i=1}^n (f(x_i) - \langle f, \mu \rangle)^2 - \nu \sum_{s'=1}^{s-1} \langle f_{s'}, f \rangle^2 - \rho \frac{1}{m} \sum_{i=1}^m ||f(x_i) - y_{si}||^2,$ subject to $||f||_{\mathcal{H}_X} = 1$

VARIATIONAL AUTOENCODER

Visualize means of a two-dimensional embedding learned by a variational autoencoder (VAE)

Fine-tune VAE with added control point location loss

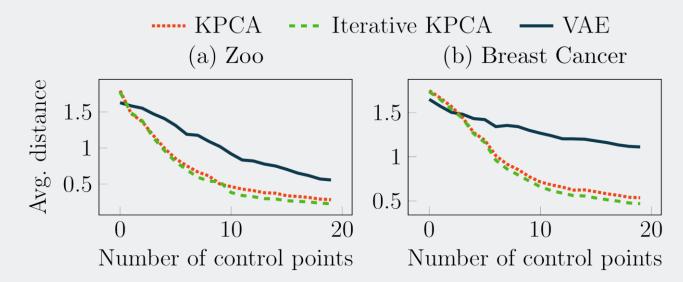


Maximize orthogonality Control point constraint

EXPERIMENTS AND RESULTS

Scalability

Test update time on various datasets Iterative approaches scale better


Measure MSE to the final embedding Largest changes at the beginning

Convergence

Flexibility

Use control points to approx. embedding More points improve approximation

1. Paurat, D., Gärtner, T.: *InVis: A tool for interactive visual data analysis* (2013) **2.** Oglic, D., Paurat, D., Gärtner, T.: *Interactive knowledge-based kernel PCA* (2014)